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Using a cell-dynamical system (CDS) to model the separation of phases, we present the results of
large-scale simulations of spinodal decomposition in 3-space of a symmetric binary alloy and incompres-
sible binary fluid at critical quench. Our main results are (1) the reliable determination of the asymptotic
or the almost asymptotic form factors for these systems, and (2) an understanding of the preasymptotic
behavior of growth laws in terms of dispersion relations of interface fluctuations. To achieve (1) it is in-
dispensable to have (i) methods to analyze the data, (ii) a scheme to simulate a system with fluid dynamic
interactions, and (iii) a demonstration of the self-averaging nature of spherically averaged quantities.
Item (iii) allows us to study sufficiently large systems with currently available computational resources.
A careful stability analysis of our CDS model (such as artificial pinning, anisotropy, etc.) is also given.
We must point out that the conventional data analysis coupled with artificial pinning and finite-size
effects may spuriously give the theoretically desired results, especially in binary fluids. The asymptotic
form factors are estimated in collage form from our large-scale late-time simulation results and various
theoretical asymptotic results such as Tomita’s sum rule. We may conclude that for binary fluids, the
agreement between our form factor and ones obtained experimentally is excellent. This also clearly
demonstrates that apart from time- and space-scale changes binary polymer systems so far studied and
low-molecular-weight systems are not distinct; that is, no polymer effect has been observed in the form
factor. In the case of binary alloys, the agreement with our form factor and various experimental results
is not as good as the binary fluid case. This may be ascribed to various complications in solids, anisotro-
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py, elastic effects, etc.

PACS number(s): 64.75.+g, 64.70.Kb, 61.20.Ja

I. INTRODUCTION

A full understanding of the nature of spinodal decom-
position, the growth of domains of two stable phases
from an initial homogeneous unstable state, has been the
focus of much theoretical, experimental and computa-
tional study. Unfortunately, no complete theory of the
late stages is available for even the simplest model of spi-
nodal decomposition, i.e., the Cahn-Hilliard (CH) [1]
equation, and no sufficiently large-scale three-dimensional
(3D) computational study has been available, especially
for binary fluids. We believe that reliable computational
results would facilitate constructing better analytical ap-
proaches to the problem.

In the present paper, we give large-scale and late-time
computational results of the cell-dynamics system (CDS)
[2,3] description of spinodal decomposition in symmetric
binary-alloy and binary-fluid systems. Our ultimate goal
is to estimate the truly asymptotic form factors and to
understand the differences between the systems with and
without fluid dynamic effects. To this end, we introduce
ways to analyze data, a scheme to simulate systems with
fluid dynamics, and a way to understand preasymptotic
results. We also critically assess the reliability of the
CDS.

We will be concerned with the late stages of spinodal
decomposition where scaling is postulated to occur [4,5].
This implies that S(g,t)=19F(ql(t)), where () is the
representative scale of the coarsening patterns at time ¢
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and F is a master scaling function. An alternative to or-
dinary scaling is multiscaling [6]: S(g,z)<(2)$@®),
where ¢(x) is a universal function. From the results of a
previous paper [7], we do not believe that multiscaling
occurs in the CH-equation-type phase separation dynam-
ics. In the presence of scaling, we expect that the growth
law for I(¢) obeys a power law, /(¢)~t%, asymptotically
in time. If one assumes that there is a unique length scale
governing the spatial patterns at each instant, then di-
mensional analysis gives us the exponents of the growth
law depending on the dynamics [8,9]. For binary alloy
systems modeled by a CH-type equation, one expects
a=1 (see also [10,11]). For binary-fluid systems,
quenched into a regime where there are interconnected
domains, one expects a=1. Many experiments have
demonstrated scaling and power-law growth for systems
as diverse as binary alloys [12-15], quasibinary glasses
[16], simple fluids [17,18], and polymeric fluids [19,20].
Numerical studies of spinodal decomposition have
been primarily carried out by Monte Carlo methods,
molecular dynamics, nonlinear (Langevin) equations, or
CDS. Monte Carlo simulations of the Ising model using
Kawasaki spin-exchange dynamics have been done for
2D [21,22] and 3D [23] systems. Although it is difficult
to generate large data sets and long-time simulation, nu-
merical renormalization-group techniques have been em-
ployed to support scaling and a late-time exponent of 1
[22]. A finite-size scaling approach has also been used to
support a 1 growth exponent [24]. Realistic fluid dynam-
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ics using the Monte Carlo technique does not appear
feasible. Molecular dynamics can simulate only a small
system for a short time [25], which is insufficient to pro-
duce detailed data on the form factor or correlation func-
tion. Another method is to solve directly nonlinear mod-
els such as the CH equation [26,27]. However, to attain
late-stage behavior, large time steps are necessary. This
leads directly to the consideration of a priori discrete
space-time models called cell-dynamical systems (CDS’s).
Such mesoscale models have been used to study spinodal
decomposition in realistic systems: 2D [28,29] and 3D
[30] systems, 2D binary fluid in a Hele-Shaw cell [31],
and 3D incompressible binary fluid [32]. These studies
generally support scaling, at least within their respective
types of dynamics, and more closely approach the asymp-
totic exponents derived by dimensional analysis than do
direct Monte Carlo simulations.

Even with the aid of a computationally efficient CDS,
unambiguously studying the late-stage asymptotic
behavior is not a very easy task due to limitations in com-
putational speed or memory. Therefore, it is important
to have some definitive asymptotic theoretical results in
order to guide and test the computational studies. For
CH-type spinodal decomposition, it has been demonstrat-
ed that S(g,t)~g* for small ¢ [33,34]. For binary-fluid
decomposition, this has not been motivated theoretically,
but experiments seem to support the exponent 4 as a
lower bound. For large ¢, Tomita [35] has derived gen-
eral expressions for the form factor which are generaliza-
tions of Porod’s law, i.e., S(g)~¢ ~?*!. Tomita also de-
rived a sum rule which is useful for checking the asymp-
toticity of the form factors.

In Sec. II, we first summarize the phenomenological
and asymptotic results which we use to analyze our data.
Next, we explain the methods used to analyze our numer-
ical data, form factors, and growth laws. We point out
that the conventionally defined average wave number
(k) may give grossly misleading results, especially in the
case of binary fluids. In Sec. III, CDS models are intro-
duced. We explain the concept ‘“‘qualitative accuracy”
[3], and demonstrate that the CDS spinodal model can be
understood as a qualitatively accurate discretization of
the CH equation. Alternatively, the CH equation is a
qualitatively accurate partial differential equation
describing the CDS model. We use a split scheme to
efficiently calculate spinodal decomposition in binary
fluids.

In Sec. IV, we present a preliminary computational
study of “damage spreading” in 3-space spinodal decom-
position for both ordinary and fluid systems. The range
of damage grows only as fast as the coarsening length
scale /(#). Rescaling the damage spreading envelopes by
the coarsening length scale shows that they are bounded
by a fixed exponentially decaying envelope. This result
suggests that perturbing the initial conditions of a subsys-
tem of a larger system affects other subsystems only
within a range comparable to the length scale [(z).
Hence, subsystems lying beyond this range should be sta-
tistically independent. This, in turn, implies that shell-
averaged quantities such as the spherically averaged
scattering form factor or correlation function do self-
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average. Thus a few samples of a large system simulation
can give very accurate results. This is a key observation
for effectively using limited computational resources.

In Sec. V, we exhibit scaling of the form factors of our
symmetric alloy and fluid system. Using a hardening
procedure on the decomposition pattern [30], we demon-
strate that a universal form factor can be obtained from
preasymptotic data. With the aid of the known asymp-
totic theoretical results, we construct a collage of the
functional form of the form factors and correlation func-
tions for both alloy and fluid cases. For the fluid system,
we are also able to exhibit the full velocity-velocity corre-
lation function over time. This function has a scaling
structure and appears to obey k ~° for k >>1, which may
be interpreted as k " ¢ due to Bray and Puri [36], and
Toyoki [37].

In Sec. VI, we discuss the growth law. Since it is im-
possible to get the true asymptotic growth law by means
of any computational approach, we must somehow extra-
polate the computational results into the asymptotic re-
gime. To this end, it is very important to understand the
preasymptotic behavior of the length scale /(¢). We
demonstrate that the dispersion relation around the kink
solution [38-40] is a key to understanding the preasymp-
totic growth law in both alloy and fluid cases. The result
strongly suggests that in contrast to binary alloys, we
cannot ignore the contribution from the essential spec-
trum for binary fluids.

Section VII summarizes our finding.

II. PRELIMINARIES

A. Phenomenology

In this paper we study the systems described by a sca-
lar order parameter y(r,t), where r denotes the position.
The order parameter is an appropriately normalized con-
centration difference of the two components. The real-
space correlation function is G (r,t)={(r,)¥(0,1)),
where { ) denotes ensemble averaging. The form factor
S (k,?) is its Fourier transform. Assuming isotropy, we
define S (k,¢) and G (r,t) as the spherically averaged form
factor and correlation function [¢f may often be
suppressed as S (k) and G(r)]. In the late stages, the
domain pattern formed by the segregated phases at a
given time is conjectured to be statistically similar to the
pattern at a later time [4,5,41]. This implies that S (k)
should be determined by a master form factor,
F(Q)=1(t)"3S (k,t), where Q =kl () with a single time-
dependent length scale /(¢). This also applies to the
correlation function as G (p)=G (7,t), where p=r /I (1).

A few theories describe the asymptotic properties that
the scattering form factor should obey. The most basic is
Porod’s law [42] which states that lim, , k9*"'S(k)
=C, A in d-space, where C; =21, and 4 is the area den-
sity of the interfaces. This follows from the assumption
that random interfaces are smooth and thin. In conjunc-
tion with Porod’s law, there is the Tomita sum rule [43]
for S(q): [[k?*'S(k)—C;A]1=0. This result should
hold for any phase ordering system in the limit that the
interfacial width is small with respect to the pattern size.
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The counterpart to Porod’s law and the Tomita sum rule
for the real-space correlation function is
lim, ,[V?G(r)+B,A/r]=0 and, assuming isotropy,
G (r)=G(0)—B; ArE (r), where E (r) is an even function
of rand B;=1.

Using more information about the principal curvatures
on the interfacial surface, Tomita [35] extracted the next
order behavior of G (r) and S (k). Defining R;(a) as the
ith principal curvature, where a is the coordinate on the
interface, and i €{1,2, ...,d — 1}, there is an invariant
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For small k, Yeung [33] reasoned from the CH equation
that S (k)~k?®, where 8> 4 asymptotically, if scaling and
1(t)~t'/3 holds. It has been postulated that this is exact-
ly S (k)~k* if the chemical potential behaves globally as
a random variable [34]. This is made more explicit by
Tomita [44], who demonstrated that the k? term in S (k)
would vanish if the system is isotropic and chemical po-
tential has no long-range correlation.

B. Data analysis

Numerically, we use a discrete Fourier transform
defined by

P ()= exp(ik-n)y(n,?) ,

! . 4)
Y(n,0)=—3 ¢y (t)exp(—ik'n),

N

where k=27n/N, n€{0,1,...,N—1}% and N is the
linear lattice dimension. We invariably impose periodic
boundary conditions in this paper. Numerically,
S(k,t)=(¥_, ()Y (2)) is easier to obtain, where the
average is over the ensemble of systems studied.
The correlation function is given by G(n,?)
=N"¢3, exp(—ik-n)S (k,?).

The scattering function and correlation function are
usually represented in a spherically averaged form. This
is defined by applying a shell averaging procedure,

Sk=->+ 3

k xeAk)

Sk’), (5)

where N, is the number of points in the shell in k-space
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Ak)={k'|k —1A<|k'|<k+1A}, with A being the
width of the shell. The points k are taken at regular in-
tervals starting at zero. The spherically averaged correla-
tion function G(r) (r =|n|) is generated analogously to
the above. The bin averaging described here for S (k) for
A=21/N skews the weight of data points in S (k), espe-
cially when A(k) contains only a few vectors. For exam-
ple, let us choose k =27 /N and A=27/N. Then in 2-
space, the shell contains four vectors with |k|=27/N
and four with |k|=v2(27/N). Although the bin is
defined as centered at k =27 /N, the average value of k in
the shell is ~1.2(27/N). In this paper, we will plot S (k)
versus k,(k), where k, (k) is the average of |k| in the k
shell, i.e.,

kyb=—— 3 K. (6)

N w&aw

This adjustment greatly improves the scaling of .S (k) for
smaller kK when (k) is small. This is important, because
at late times, S (k) is represented by very few points
about the peak, all at small k.

Traditionally, one defines the characteristic length
scale of the pattern size based on G (r) or S (k). The first

zero crossing of G (r) is one such scale. The inverse of
(k),

(ky=[arkse) [ [diso, @

is another. The average {k ), defined by (7), depends on
the discrete integration of S(k), which may have very
few points near its peak. This leads empirically to a dras-
tic systematic error in (k). For example, in Fig. 1, we
generate a simple curve as a test form factor,
F(Q)=0%/(1+Q%. The scattering function is
S(k)x<F(k/{k?)), and we sample it at discrete k as if it
were the spherically averaged S (k) for a system of size
N =64. Using this, we generate a computed ¢ k ) accord-
ing to (7) and compare this with the actual (k) (see Fig.
2). We note that at small (k), the measure can
significantly overestimate the change of (k). The

effective growth exponent is defined by
0.50 _— T T —
O <k>=0.135
0.40 | 0 <k>=0.21 J
O <k>=0.275
—— A test form factor
. 0.30
g
= ‘
0.20
0.10 -
0.00 8

00 10 20 30 40 50
Q=k/<k>

FIG. 1. Test form factor F(Q)=Q*/(1+ Q%) used to gen-
erate a mock measurement of (k) from discrete S (k). Points
shown are discrete points of S(k) for (k)=0.135, 0.21, and
0.275; the linear system size is assumed to be N =64.
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FIG. 2. Plot of (k) defined by (7) vs true (k). The linear
system size is assumed to be N =64, and the measured form fac-
tor is simply the discretely sampled points of an actual exact test
form factor in (1).

a=—3dIn({k))/dIn(t). Suppose that (k) xt"!/3 then
the exponent should be uniformly 1. With the above sys-
tematic errors occurring as in Fig. 3, there could be seri-
ous misinterpretation of the asymptotic exponent, de-
pending on at which (k) the data was terminated.

We find that a new { k ) defined by

S k| 71s (k)
k+#0
ky=x2 8)
(k) > k|28 (k) (
k+#0

eliminates this systematic error, and is consistent with
the old (k) when there are sufficient number of points in
S(k). Figure 4 demonstrates the behavior of the old and
new (k)’s on the actual data of simulations with
different system sizes. We note that the new { k) follows
the old (k) until the systematic error begins. Further,
the new (k) of a small system smoothly follows the (k)
applied to a larger system until very near the end of the
growth of the smaller system’s domains. In contrast, the
old (k) has a distinct systematic error before the end of

0-60 T T T T T

050 1

0.40

030 [ [ #

020 | | 13 !

Effective Exponent

0.10 | | :

0.00 'i - 1 1 1 1 1
0.10 0.15 0.20 - 025 0.30 0.35 040
<k>

FIG. 3. Computation of the effective exponent assuming that
the true law is of the form (k) =ct ~!/3. Note that if linear re-
gression were used from (k) =0.4 to 0.175, one might estimate
the growth exponent to be significantly larger than % This im-
plies that even if the empirical exponent is less than %, one
could erroneously conclude that the observed exponent is %
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FIG. 4. Plot of (k) vs the time step of various-sized simula-
tions of the binary-fluid decomposition. Solid points use a new
measure of (k) (8), while unfilled points use the old measure
(7). Note the systematic error induced by the old measure. For
example, the 32° system measured by the old (k) would indi-
cate a near (k)=t"! growth law due to the systematic error.
Model parameters are M =1, D =0.7, =1, and 4 =1.3 with
the tanh map.

the growth. Note that the effect of the systematic error is
to boost the effective exponent for small systems, bringing
it much closer to the expected value of —1 than is actual-
ly indicated by the larger system.

III. CELL-DYNAMICAL MODELS

A. Model for spinodal decomposition

Spinodal decomposition is a typical nonlinear none-
quilibrium phenomenon. Such phenomena are usually
modeled in terms of partial differential equations (PDE)
with nonlinear terms, and their analytic study is of limit-
ed use. Numerically solving them is indispensable, and
space-time discretization is mandatory. Therefore, the
most natural idea is to ab initio construct space-time
discrete models to describe phenomena at the mesoscopic
level. Such models would be preadapted to our computa-
tional means. We can even merge the modeling of the
system and the devising of a numerical algorithms in this
way. Thus we model space-time phenomena in terms of a
map from a pattern at time ¢ on a lattice L, {¢,(n)}, <,
to that at time ¢ +1,{vy,,,(n)},c,, where ¥,(n) is a
quantity at the nth lattice point at time . The quantity
can be a scalar, tensor, or even a picture, so we imagine
these quantities to live in a cell attached to each lattice
point. We call such systems cell-dynamical systems
(CDS’s) [2,3]. The essence of the ab initio construction of
a CDS model of a phenomenon is to model mesoscopic
scale fluctuations directly in terms of the dynamics of
each cell and relations among them.

The important features of the mesoscopic fluctuations
of a system undergoing spinodal decomposition are (1)
the local tendency to segregate (tendency to increase the
local concentration difference), (2) the stability of the
segregated bulk phases, and (3) the conservation of
matter. A convenient variable to describe the
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configuration of a binary mixture is the concentration
difference ¥ of the two components, normalized between
—1 and 1. The simplest model incorporating all these
features reads [28]

Y, (n)=v¢,(n)+M[I,(n)—(I,(n)N], )
I(n)=D[{¢,(n) N —¢,(n) ]+ F(¢,(n))—¢,(n) .  (10)

Here #( ) defines a symmetric hyperbolic map with one
source at the origin and two sinks. {( )) is a suitable iso-
tropic neighborhood average (see Sec. IIIC) and D is a
positive numerical constant describing the stability of the
bulk uniformity. I, is the increment of ¢ if there is no
conservation constraint, and can be interpreted as
I, < —pu, where u is the effective chemical potential. M is
a mobility constant. We will refer to the discrete time
steps in the CDS modeling as ¢-pg. For mesoscale phase
separation, noise has been found to be irrelevant [45].

Strictly speaking, we need not worry about the relation
of our CDS model to PDE models, the CH equation in
our case:

%'IA=—MA(DA¢+T¢—g¢3), (11)
where M, D, 7, and g are positive phenomenological con-
stants. The CH equation is a phenomenological model
just as the CDS model, so there is no particular reason to
favor the PDE model over the CDS model or vice versa.
Our original claim [10] was that the mathematical
essence of spinodal decomposition is beyond the distinc-

Yoral0)~ [ dy Gx —y, 800,00+ [ "ds [ dy G (x —y,8t =)
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tion of discrete and continuous models. Because we do
not have any suitable language to describe this
mathematical structure, we use PDE or CDS reluctantly.
Hence it is important that both capture the structure.
We now give a supporting argument to the assertion that
they both capture the same physics.

The overall Laplacian in the CH equation imposes the
conservation law, so we pay attention to the noncon-
served counterpart which is a semilinear parabolic equa-
tion of the following form

Y —Day+gw) . (12)

Let us introduce the solution semigroup ¥, of the corre-
sponding ordinary differential equation

dF,(y,)
— =8 F @) . (13)

The formal solution of (12) is given by
Y (x)= [dy G(x —,5t09,(p)

+f05tdsf dy G(x —y,8t —s)g(¢, . (y),
(14)

where G (x,?) is a fundamental solution for 3, —DA (re-
call the principle of “not feeling the boundary”). Use (13)
as an approximate local solution to (12) for short times,
and integrate (14) by parts to get

dF,(¢Y,(y))
ds ’

=F5,(,(x)+DA [ *ds [ dy G (x =y, 80 )T, (%, () . (15)

If &6t is sufficiently small, then G (x —y,8t —s)=~8(x —y),
so (15) reduces to the semigroup discretization proposed
in [28] as the crudest approximation to (15). Imposing
the conservation law and choosing the unit of time to be
8¢, we get (10). Changing 8¢ corresponds to changing the
map Fs,. But the map is always symmetric around the
origin which is a hyperbolic source, and there are two hy-
perbolic sinks irrespective of 6z. At least empirically, we
know that the asymptotic form factor and the time
dependence are independent of the choice of the map
(universality), and of the choice of the isotropized averag-
ing operator. Notice that for sufficiently small ¢ and fine
spatial discretization, the CDS models reduce to the sim-
ple Euler scheme. With the aid of this universality, we
conclude that the Euler scheme for sufficiently small 6¢
and the semigroup scheme for reasonably large 8¢ give
the same asymptotic behavior. In other words, the CDS
model and the CH equation give identical asymptotic
macroscopic results.

It should be emphasized that although the above argu-
ment allows us to regard the CDS model as a discretiza-
tion scheme of the CH equation in a certain sense, the

[

CDS model is not a PDE solver in any standard sense of
numerical analysis. Obviously, the solution obtained by
the CDS equation with a large 8¢ and a large spatial in-
crement cannot give any accurate solution to the initial
value problem of the CH equation. Still, the macroscopic
observables are quantitatively accurate. This implies that
a new concept, the qualitative accuracy, of numerical
analysis is possible [3]. We say a scheme is qualitatively
accurate if the scheme can give quantitatively accurate
results about the quantities which qualitatively character-
ize the system. Thus we claim that when seen as a
discretization scheme the CDS spinodal model is a quali-
tatively accurate discretization method for the CH equa-
tion. Of course, we can also say that the CH equation is
a qualitatively accurate continuum counterpart of the
CDS spinodal decomposition model. The relation be-
tween the “diffusion constants” D in both models will be
mentioned in Sec. III C. This qualitative accuracy is pos-
sible because the mathematical structure governing the
late-stage spinodal decomposition allows both discrete
and continuum modeling. The reason for this seems to be
a sort of renormalization-group structure, but we have
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not been able to exploit this analytically. Qualitative ac-
curacy is a blessing, since the CH equation has never
been solved numerically as a PDE for sufficiently long
time. The coarse discretization scheme utilized to solve
the CH equation only solved an inefficient CDS model.

If Kawasaki exchange dynamics is honestly modeled,
then the CDS spinodal model must be modified. One
such model proposed in [46], which corresponds to the
PDE model proposed by Langer [47], and by Kitahara
and Imada [48], is

%’tﬁ=—v-(1—a¢2)V<DA¢+T¢—g¢3> , (16)

where a is a positive constant not larger than Vg /7. Ex-
tensive numerical study of this equation has been per-
formed [49]. The modification becomes significant if
gravity cannot be ignored or if the quench is extremely
deep, but otherwise it is not believed to be so crucial. In
this paper, we do not adopt this modification. Kawasaki
exchange is an artificial dynamics for Monte Carlo simu-
lations, and it is naive to believe that the Monte Carlo
models are more realistic than the above phenomenologi-
cal model. The same criticism applies to lattice-gas ap-
proaches as well.

B. Model with hydrodynamics interactions

A basic PDE model that embodies the essential physics
of the slow incompressible flow of a binary mixture
driven by the gradients of the chemical potential is given
in [9]. Typically, one considers a coarse grained free en-
ergy F-g which may have the typical Landau-Ginzburg
form. The associated chemical potential gradient,
Vu=V(8F g /6v) drives a diffusive current, i.e., the or-
dinary CH dynamics, and provides a driving force on the
incompressible binary fluid. Under the assumptions that
the fluid velocity v is slow and slaved to the phase separa-
tion dynamics, and that the (kinematic) viscosity 7 is in-
dependent of ¥, one may make the approximation:

Av=%(Vp — V), (17)

with the incompressibility constraint V-v=0. Combining
this with the CH equation, one arrives at the following
closed equations first derived by Kawasaki [50]:

SF , ,
5¢(r ),
(18)

%‘tﬁzMAg—g—[w(r)]fT(r—r'>[V'¢(r'>]

where T is the Oseen tensor. One could proceed by
naively discretizing this equation. However, the resulting
discrete model would be difficult to simulate due to the
small time steps required for a stable simulation. Fur-
ther, the convolution integral requires O (N 2d) steps,
where N is the linear system size.

As our starting point, we use a CDS model of spinodal
decomposition of a symmetric binary alloy. This pro-
vides us a computational model for the ordinary part of
the dynamics. Then the fluid flow is computed using
fast-Fourier-transform (FFT) techniques. One could
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model the effect of fluid flow as has been done in our
Hele-Shaw model [31,51] or later in Koga and Kawasaki
[32] by faithfully adding the fluid flow into the update of
the order parameter. We will call this model the additive
model. While this is in the spirit of the original equation
(18), we found empirically that such a model could be
significantly unstable for large time steps or small viscosi-
ty. The dissipative part of the dynamics primarily main-
tains the shape of the domain walls and stabilizes the
bulk. The hydrodynamic flow part advects large
domains. At large time steps, the hydrodynamic flow,
implemented on a discrete lattice, has a distorting effect
on the shape of the walls and on the bulk. In the additive
model, the result of the dissipative term is added directly
to the distorted result of the advection. In the next time
step, the fluid flow reacts via the driving force to the now
distorted pattern, leading to further distortion. This situ-
ation is further exacerbated by the fact that the modes
which stabilize the bulk can be slower than the hydro-
dynamic modes which move the domain walls [40]. This
is discussed further in Sec. VI B.

We avoid this difficulty by the following approach.
Writing equation (18) symbolically as

%lté:NCH¢+‘NH¢ ) (19)

where Ny is the nonlinear operator describing the con-
ventional CH equation, and N the rest due to hydro-
dynamics. The formal solution is given in terms of the
semigroup exp| f dt (Neg+Ny)] (in terms of the time-
ordered exponential). Approximating the integral as a
Riemann sum, we can formally write

exp [fdt(./\/cﬂ—i-./\/H) ] =]] exp[AtNcylexp[At Ny ],

(20)

where we have used the idea of Trotter’s formula. The
discrepancy of both sides is of order Az. This implies that
updating for small Az can be split into two operations,
one describing the hydrodynamic advection effect, and
the other describing the ordinary spinodal decomposition
without hydrodynamics. Explicitly, this gives us in
discretized time steps,

’ ’ ’ SF ’
Y=, —AtVY,(r) [ Tr —r' V', (r oy BN
21)
¢t+A,=¢?‘+AtMA§—5(¢f) . (22)

To further accelerate the simulation, we note that the spi-
nodal pattern evolves slowly with time, so that the corre-
sponding flow field also evolves slowly. The spinodal pat-
tern usually shifts on the order of L of a lattice space
per time step during a typical simulation. Even if the ac-
tual fluid field were updated every ten time steps, it would
reflect the fluid field of a pattern to within % of a lattice
space, which is still well below our course graining length
scale.

We organize the numerical problem as follows. We
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first compute the velocity field for this order-parameter
field as

v,=F N I(—[VI L]}, (23)
with
L=D[{yN—¢, 1+ Fy,)— ¢, , 4)

where [V], is the center difference discrete gradient
operator, ¥ is the discrete FFT, and T, is the discrete
version of the Fourier-transformed Oseen tensor con-
structed by solving (17) with a periodic boundary condi-
tion

[V]®[V].
[al!

c

T=% 1+ (25)

L
n

Here [A]; ! is inverse of the standard nearest-neighbor
discrete Laplacian, and [V], is the center difference gra-
dient. This discrete Oseen tensor is an approximation to
the exact operator and is not an exact discrete projection
operator to produce a divergenceless field. This is due to
the incompatibility of the definition of [V], and [A],
since [V].[V].#[A].. The order-parameter field is then
advected as

F =, —[V]. (v.¢,) . (26)

In this way, the order parameter is still conserved under
advection. Finally, we execute the ordinary dynamics on
Yr toget ¥, 4.

As noted above, since the velocity field does not usually
change appreciably, we again execute the ordinary dy-
namics but use the velocity field without updating. This
cycle is repeated a fixed number n,y;, of times; we find
empirically that n,q;,=10 was suitable for the parame-
ters we are using. If we note a buildup of order parame-
ter, we reduce M gyt Mykip=—9 if Py >1.07, 2 if
Ymax > 1.075, and 1 if ¢, > 1.08. In the Appendix, we
test this scheme (split scheme) versus the ordinary addi-
tive scheme with n,4;,=1. We note here that, mesoscop-
ically, this scheme generates the same pattern, as mea-
sured by the form factor.

The velocity field update is about as CPU expensive as
10-20 ordinary dynamics time steps for a system of size
1923. If we were to do a velocity field update each time
step, the overall program would be prohibitively expen-
sive to run on large systems. With the above, we are able
to run several large systems at about 3—4 times the cost
of the nonfluid dynamics system. Much of the time, the
system ran at maximum 7,q;, with no problems. Empiri-
cally the value of n,q;, succeeded in detecting situations
where the field was rapidly reorganizing locally and
avoided instability mentioned above.

Polymer systems undergoing spinodal decomposition
have been  extensively studied experimentally
[19,52-54,20]. It is tempting to model the polymer sys-
tem with a modification of the free-energy functional F in
(17). de Gennes [55], Pincus [56], and Binder [57] also
considered possible modifications of the kinetic
coefficient. In principle, there are at least three relevant
length scales in the problem: the pattern size /(¢), the po-
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lymer radius of gyration R, and the correlation length
which is equal to interface thickness &£&. To describe spi-
nodal decomposition kinetics, the system must be de-
scribed at the subcorrelation length scale. Thus we can-
not use the random-phase approximation at the scale of
R as already pointed out in conjunction to the block
copolymer segregation problem [51]. The Flory-
Huggins-de Gennes (FHdAG) free energy used in existing
studies has the same difficulty. Furthermore, we do not
know how realistic the reptation mechanism is in the
melt. Thus no reliable theoretical or computational stud-
ies of the polymer effects on spinodal decomposition are
possible.

The three representative length scales mentioned above
are independent, at least in the scaling regime. But, as
seen in [19,52], R; and £ appear to be proportional in ac-
tual experimental examples. Thus we may conclude that
there has been no really deep quench symmetric spinodal
experiment in polymers with fluid dynamics [58]. This
strongly suggests that we do not need any special model
to understand polymer spinodal decomposition in the re-
gimes that have been accessed by real experiments. Our
results indeed agree well with the results obtained by,
e.g., Hashimoto and co-workers [19] as seen in Sec. VD.
Actually, experimental results from polymeric systems
are thus far the best quality for spinodal decomposition
with fluid dynamical interactions. One might counter
that there are polymer effects on spinodal decomposition,
pointing out the so-called ‘“N-branching” phenomenon
[59], pattern freezing observed in the off-critical quenches
[60], etc. Off-critical freezing occurs because one com-
ponent cannot diffuse through the bulk phase of the oth-
er. Thus this is a true polymer effect, but the effect can
reasonably be described by (16). Notice that the breaking
of one phase into small domains itself due to off-
criticality does not cause freezing, if the system is de-
scribed by the CH equation with the free energy function-
al replaced by the FHAdG form. The so-called “N-
branching” phenomenon may be a much more interesting
effect than off-critical freezing, but we believe that this
can be accounted for by appropriate choice of parameters
in the model. The nonuniversality in the preasymptotic
growth law is, as discussed in Sec. VI B, not a genuine po-
lymer effect. To observe more interesting polymer
effects, we need a system which we can quench deeply.
This means that one must mix rather incompatible poly-
mers A and B to prepare the initial condition; simply
raising the temperature is usually not enough. One possi-
ble way may be to use a mixture of 4, B, and AB diblock
copolymers. A more drastic means may be to use AB-
diblock copolymers and break the AB covalent bond by
irradiation, for example.

C. Pinning and instability

Before proceeding, we will consider various problems
that may occur in heavily coarse-grained, discrete sys-
tems. Some of these problems have been addressed be-
fore [26,28], particularly the linear stability of uniform
solutions and the occurrence of a slowing down of the
system due to over coarse graining.
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1. Pinning

In a previous study of spinodal decomposition of a
binary fluid in a Hele-Shaw cell [31], we found for partic-
ular parameters that the domain walls of the system ap-
peared to become gradually pinned to the underlying lat-
tice structure of the simulation. This also exhibited itself
as a slowing down of the expected growth law over time
until the system froze. This pinning occurred for param-
eters that were deemed safe empirically from observation
of the ordinary model of spinodal decomposition. This
was ascribed to the ability of fluid flow to more efficiently
rearrange the domain structure and to find the favorable
pinned structures. Notice that the acceleration in devel-
opment of the conventionally analyzed {k ) due to finite-
size effects countered with this pinning effect could give a
false signal of the expected growth behavior (k) ez ™!
for some intermediate time range.

To show the effect of pinning for the ordinary spinodal
decomposition model, we make a trial 2D run. The
neighborhood average is

=1 T yv+L 3 ¢, @7
{NN} {NNN}

where {NN} and {NNN] stand for nearest neighbor and

next-nearest neighbor. The map is

H )= A tanh[tanh~(1/A)y] , (28)

which we call the tanh map, with 4 =1.5. We varied D.
The growth law is plotted in Fig. 5 over time for various
D. Note that for D >20.067, the growth of the system ap-
pears as the expected power law, while for D <0.067 we
find that the system slows down. Examination of the spa-
tial pattern finds that the walls pin to the underlying lat-
tice. Note that D used here is related to the D pg in 2-
space by D =(4)Dcps and in 3-space by D =(1)Dcps.
Such relations will be discussed briefly in Sec. III C.

12

k> DCDS

¥ 0.10 | -~ D=0.15, M=2
— — D=0.166, M=2
— -~ D=0.175, M=2
—— D=0.2, M=1

- D=0.25, M=1
—— D=0.275, M=1

10000 100000

M tCDS
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FIG. 5. Plot of (k) for the 2D spinodal decomposition mod-
el with various D¢ps. The plot is scaled by plotting (k)D&
vs topsM. For Dcps=0.15-0.175, pinning is obvious as (k)
starts to slow down significantly from the expected ¢ ~!/3 law.
Dcps =0.25 and higher appear to be unaffected. D¢ps=0.2 ap-
pears almost normal until very late in the run. Data are taken
from a single 1282 sample run. For Dcpg=0.15 and 0.2, arrows
mark (k). where the pinning effect is estimated to start. A
reference line for ¢ 7173 is also plotted.
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To assess the numerical pinning, we examine the equi-
librium solution to the discrete flat interfacial wall:

where pw,=F(Y)—y and [A], is the usual three-point
discrete Laplacian, 9; ., +¢; _,—2¢;. We solve this nu-
merically on a unit discrete 1D lattice with coordinate n,
with ¢¥(n) describing the order parameter. The boundary
conditions are Y(—N/2)=—1 . and P(N/2)=v -
We solve this with two special conditions: %(0)=0 (“the
zero condition”) and —¢(0)=1(1) (“the center condi-
tion”). We note that the discrete free energy which gen-
erates Eq. (29) as a first-order variation is the usual

2 DIV e+ f($(n))], 30)

where f($)= [} [F)—¢ld¢, and [V],9(i)=4(i +1)
—(i). In Fig. 6, we graph, for various D, Ao =0,
— O enter USing the tanh map with 4 =1.5, where the
discrete surface free energy (o) for the zero and center
equilibrium solutions are denoted as 0 ,.,, and o ., TE-
spectively. We note that the freezing appears for
O sero/ O center > 1. 14 for this system size.

Consider a section of the interface with mean curva-
ture K. The driving force due to curvature is
feurv=(d —1)oK. The force due to the pinning effect is
roughly f,;, =Ao [(lattice space)/2]”!. From this we get
a criterion that the lattice pinning effect will compete
with the curvature driven dynamics when

Ao _d—-lg 31)

o 2
Estimating that K =4A~! with (k )A=2, we find that
the { k )., where pinning effect may become important, is

T Ao
- . 32
d—1 o 32
For example, for the above 2D model, with D22 =0.15,
0.175, and 0.2, we find {k),=0.65, 0.57, and 0.43, re-

spectively. The first two estimates correspond to the (k)
where we do see the effects of the pinning in Fig. 5. For

(k). =

0.40 T T |
Q
0.30 + \
\C‘\
T 0.20 e
s (\C
A
N
0.10 | So

0'00 i L 1 ]
0.02 0.04 006 008 0.10 0.12 0.14
D

FIG. 6. The ratio Ao /o, as determined numerically, is plot-
ted against D. Note that D here is related to Dcpg by
D =1Dcps in 2D and D = 1D ps in 3D.
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D22,=0.2 we do not see any discernible pinning effect
until very late. However, in the Hele-Shaw system, for
A=1.5, DE=0.2, we did see pinning occur, starting
at about (k)~0.32. Thus we can see how Ao /o con-
tributes to numerical pinning. It is important to note
that even when pinning should take place, its effect seems
to grow smaller as Ao /o gets smaller. Thus the ordinary
2D system does not appear to be affected at the estimated
(k), for Ao /o ~0.12. Thus we feel it is safe to proceed
as long as Ao /o <0.1. For our later work, we generally
run with Ao /0 <0.07, and in the case of the hydro-
dynamic model we have Ao /o =0.03.

2. Discrete Laplacian

We define the discrete Fourier transform as (4). The
usual discrete Laplacian (times 1/2d) in 3-space is

FR=LUALY=L 3 9(x)—%x), (33)

x' ENN(x)

where NN(x) stands for nearest neighbors to x. The
Fourier transform of the above yields

F(k)={}[cos(k;)+cos(k,)+cos(k;)—1]} ¢y . (34)
We use a 3D neighborhood average defined as

YN=& 3 v+ 3 v+ 3 v, (35)
{NN} {NNN} {NNNN]}

where {NNNN} stands for next-next-nearest neighbor.

For f(x)={y) —1, we get

F(k)={L&[2cos(2mk,)+2 cos(2mk,)+2 cos(27k, )]

80
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N2 N/

FIG. 7. (A) Plot of isocontour lines of the usual discrete
Fourier-transformed Laplacian looking down the [001] axis. (B)
Isocontour lines of the usual discrete Laplacian looking down
the [011] axis. (C) 6:3:1 “Laplacian” looking down the [001]
axis. (D) 6:3:1 “Laplacian” looking down the [011] axis.

+ 3[4 cos(27k, Jcos(2mk,, ) +4 cos(27k, Jcos(27k, ) + 4 cos(2mk,, )cos(27k, )] ,

+ §5cos(27k, )cos(27k,, )cos(2mk, ) — 1} ¢y .

In Fig. 7, it is clear that this more complex 6:3:1 “Lapla-
cian” has the desirable property of being more generally
isotropic, especially at small to medium scales. A better
form is possible, but for our purpose this is enough. This
type of analysis has been done for the 2D counterpart by
Tomita [44], who showed that Eq. (27) is optimal.

In Eq. (11), constants D and M are roughly related to D
and M in the CDS models by looking at the small-k
behavior along an axis. In this paper, we will generally
use Dcpg or Mpg for the CDS model coefficients unless
otherwise clear from context. The relation between the
coefficients depends on the dimension and averaging
used. For the averaging used above, in 2-space,
D =1Dcpg and, in 3-space, D =1Dcpg, where At is
chosen to be the unit time.

3. Bulk instability

We check the condition for linear stability of the CDS
model. Recalling Eq. (10), we may easily linearize the
equations about a constant =1, and Fourier transform

I
to get
+1_—
¢1t: —¢ltg_MCDSLkI{( ’

Iy =F (o) ¥+ Deps L — Yk

where L, is the Fourier transform of the operator

-+ N— -+ and F is the derivative of the map F(4).
We may rewrite the above as
T =H ()Y (38)
where
H (Yg)=1—McpsLy [ F(¢Yg) +DepsLy—1] .  (39)
For the bulk Y=, to be stable, we want

|Hk(¢bulk)‘ < 1, for k7£0.

H, is plotted in Fig. 8 along an axis, for ¥,=0 and for
1o==1, using the Laplacian defined by Eq. (36), and the
tanh map with 4 =1.15, D pg=0.7 and A4 =1.3,
D ps=0.7. At small scales, we see that H, may take on
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FIG. 8. Plot of H, for =1 and O appropriate to the CDS
model using the map F(¢)= 4 tanh[tanh™ (4 ~")y]. For two
different sets of parameters, 4 =1.15, D =0.7, and 4 =1.3,
D =0.7.

negative values. As long as |H,|<1, the high wave-
vector behavior, especially for |k| > 2, of the bulk should
be of no consequence. At =0 we see the instability
leading to the initial phase separation where H, > 1. The
structure of wave vector |k| > 2 is suppressed from the in-
itial conditions, and thus plays little role in the structure
of the spinodal decomposition.

D. Computational costs

For the spinodal decomposition model without hydro-
dynamics, the cost on a Hewlett-Packard model
9000/730 was about 15.9 s per time step for a 1283 sys-
tem. On a Convex C-3840 (four processors), each time
step took 3 s for a 1283 system. On a Cray-2, a 192 sys-
tem took 1 s per time step. In each case, one uses an easi-
ly computed empirical approximation to the tanh func-
tion:

tanh(x)~ l27~p(x)[1+0.02p(x)2]
o

—1

x| |1+2per| + 33+ Lper
T T

’

(40)

where p(x)=x —0.025x3. This approximation is satis-
factory for |x|<3.5. Such a detailed approximation is
not at all necessary, but allows easier comparison with
previous studies using the tanh function. The tanh map
we use in the CDS models is computed so as to set the
stable fixed points at y==11. This is done by computing
F()= A tanh(B1) where B =tanh™(1/A4). When us-
ing the approximation of the tanh function, the fixed
points are close to, but not exactly £1.

For the binary-fluid model, with n,4;,=10, and
without there being any adaptation, the Convex C-3
could process on average one time step every 7.3 s for a
128% system. The Cray-2 could process one time step
every 8 s for a 192% system. When an adaptation in Ryskip
was needed, as in the main n=1 1923 simulations, the
time per step could vary, but on average attained one
time step every 22 s.

IV. AVERAGING AND DAMAGE SPREADING

A. Fluctuations in form factor

To get reliable results from simulations with unfor-
tunately fairly severely limited resources, we must study
the necessary number of samples and the system size
carefully. Milchev, Binder, and Heermann [61] demon-
strated that the statistical errors cannot be reduced with
the aid of a large system size, because the form factor
lacks the so-called self-averaging property. They recom-
mended that if one has a fixed amount of resources, it is
better to study numerous smaller systems rather than
fewer larger systems. This recommendation has been fol-
lowed almost unanimously. Thus Koga and Kawasaki
[32] studied the 3D spinodal decomposition with hydro-
dynamics with the aid of numerous 64> systems.

Unfortunately, as we will demonstrate, such a small
system is quite inappropriate to obtain the asymptotic
properties of a system such as the form factor. The
representative length scale must be more than ten times
as large as the interface thickness of the system [62].
Furthermore, the system size should be at least a few
times as large as the pattern size. Thus in the case of the
ordinary spinodal decomposition, we need at least
3X 10X (5-6) linear lattice size, where 3 is the smallest
possible thickness of the interface to avoid pinning. But
it is extremely difficult to study 100 samples of 200> sys-
tems.

Milchev, Binder, and Heermann’s recommendation im-
plies that, even in real experiments, to get a reliable form
factor, one must study many samples. But of course this
is not the case. A single large sample usually gives a
beautiful form factor without large errors (we ignore the
subtlety of subtracting the background, etc. in this dis-
cussion.) In this paper we do not follow the recommenda-
tion. Actually, we wish to recommend the opposite: Try
to study as big a system as one can, reducing the number
of samples considerably. In this section we explain the
rationale behind this proposal. In essence, what is over-
looked in Milchev, Binder, and Heermann’s recommen-
dation is the noise structure in the form factor. At each
k, Milchev, Binder, and Heermann are absolutely right to
claim that the fluctuation is of the same order of the aver-
aged quantity. But for large systems, these fluctuations
in different but adjacent k’s are fairly uncorrelated, so the
local averaging of the form factor over k almost elimi-
nates the fluctuations. There is a question as to the bin
size required to average out the statistical errors. If the
ratio L /L; of the system size L and the size of the statist-
ically independent volume L; is small, then the bin size
cannot be made small, but if the ratio is sufficiently large,
a very small bin is enough to average out the fluctuations.
This explains the real experimental results.

For simplicity, we consider a discrete lattice system
whose order parameter is ¥, and define the empirical
form factor

S(k)EFIE S explik-(n—m)]g(n)y(m) , 1)

where N is the total number of lattice points. The ensem-
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ble average denoted by (s(k)) (i.e., the average over
samples) is the form factor S (k). To get a zeroth-order
estimate of the fluctuation, we assume that v is a Gauss-
ian stochastic field. This is not a correct assumption, but
it is sufficiently realistic as we will see soon. We get

(s(k)*) —(s(k))*=S(k)}*+S (k)5 . (42)

This is independent of the system size. Hence, as Mil-
chev, Binder, and Heermann claimed, the large fluctua-
tion of the empirical s(k), which is illustrated in Fig. 9,
cannot be reduced by increasing the system size, but only
by increasing the number of independent samples. Figure
9 demonstrates that (42), a consequence of the Gaussian
assumption, is reasonable for most k except around
k/{k)~1.3[63].

Next, let us write down the cross correlations of s (k)
with different k with the same Gaussian assumption:

(s(k)s(k'))—{s(k)){(s(k'))
=S(K)S(k)[A(k—k')+A(k+k")], (43)

where
i 2

A(k):F

ek (44)

n

Here A is the familiar interference factor, and is very
small when |k—k’| is nonzero (actually zero for inverse
lattice vectors), and the moving average of s(k) should
almost eliminate the fluctuations from the empirical form
factor.

However, if an extensive moving average is required to
this end, the resolution of the obtained form factor would
be poor. Note that the form factor does not change ap-
preciably over Ak ~1/L;. That is, we can average s (k)
over this interval without distorting the form factor.
Equation (44) implies that if the difference of k and k' is
of order 1/L, then the fluctuations are statistically in-
dependent. Hence the ratio L /L; must be the key factor.
It is sensible to assume that L; is of the order of the pat-

10

10

<k>® S(K)

10°

10°

k/<k>

FIG. 9. Plot of S(k) of a given sample done without averag-
ing. Each plus represents S (k) for some k where k = |k|. This
is plotted against the spherically and ensemble averaged S (k).
The fluctuation one sees in the single sample S(k) does not
change with system size, but the density of the points does.
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tern size, but this will be checked explicitly soon below.
The number of s (k) in the bin of size Ak is ~Akk¢~'L¢,
since the density of the k vector is L% Let k~n/L.
Then the number of k vectors we can average without
distorting the form factor is ~n¢ "L /L;. This implies
that if L /L;~ 10, then we can reduce the fluctuation by
the factor of at least ~3 even for a very small wave vec-
tor.

A simple demonstration of this is to check the fluctua-
tion of S (k) versus system size. We do this by looking at
S (k) near the peak, using a bin of size 277/N, where N is
the linear system size. For four 1923 samples, with
(k)~0.2, for a point k/{k)~1, we find that
(S(k))=28.8, and that the standard deviation o =1.2.
There are 450 points in the shell for this bin. The Gauss-
ian estimate is 0 =(S(k))/V'450~1.4. For four 128°
samples, with (k)~0.2, we find (S(k))=27.7, and
0=2.6. The Gaussian estimate is o=(S(k))/V210
~1.9. For eight 64° samples, with {(k)~0.2, we find
(S(k))=20.4, and 0 =4.4. The Gaussian estimate is
o=(S(k))/V62=~2.6. While the above is not a
definitive study due to the small number of samples, it
does indicate that the Gaussian estimate for the fluctua-
tion of the spherically averaged quantities works well,
and generally improves with larger system size. Also
note that if we had chosen to fix the bin size in k space in-
dependent of system size, the fluctuation for larger sized
systems would have decreased faster.

B. Damage spreading

The remaining task is to estimate L;. We study this
through the study of the propagation of disturbances in
the initial conditions (essentially a damage-spreading
study [64]). Since the study sheds further light on the
dynamical nature of spinodal decomposition, here we
give more details than required to estimate L;. The
damage-spreading experiment consists of looking at the
difference of two samples which differ only by a small lo-
calized change of the initial conditions.

We ran two systems with almost identical random ini-
tial conditions distributed between £0.05. The only
difference between the two systems was in a single cell of
the initial random field. One sample had the cell set to
+0.05 and the other sample had the cell set to —0.05.
We then followed the evolution of the difference between
the two samples. For this preliminary study, we took
eight different random initial conditions and applied ordi-
nary and hydrodynamic models to them. Each initial
condition was studied with the damage described above.
The samples were size 64° and we used the tanh map with
parameters A =1.3 and D =0.7. The hydrodynamic
model used a viscosity of 7=1.0. Let 3; be the order-
parameter field of one sample and 1, be that of the other
sample.

As a global measure of the effect of the damage, we use
the I norm: ||¥;,—,|,=V 3, (¥(n)—¢,(n)). To see
the difference dynamics plays, we compute the /2 norm of
the damage over time for the ordinary and hydrodynamic
models with identical parameters. This is shown in Fig.
10. As we can see, until #cps ~ 300, the /? norm behaves
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FIG. 10. Plot of the I? norm of the damage over time for
binary-alloy and binary-fluid dynamics.

identically. Beyond this time, the different dynamics
causes the damage to spread differently. The /% norm of
the damage for fluid systems grows nearly like ¢!, while
that for ordinary systems grows like ¢!/3. This suggests
that the damage spread scales with the characteristic
length scale of the spinodal patterns. In Fig. 11 we see
that the /2 norm does appear to grow asymptotically like
(k). This strongly supports the assumption that there
is only one representative length scale in the problem.

At a given time, we looked at 8¥(r)=|y,(r)—,(r)|,
where the coordinate r is centered at the initial damage.
The damage caused widely varying effects, depending on
the initial condition, so the details of the envelope close
to the center of damage may be obscure, but the tail of
the envelope is well established (Fig. 12). We can super-
pose the damage envelopes at different but late times by
plotting them versus r{k ) (Figs. 13 and 14). Figure 15
compares the damage envelope of the binary-alloy and
binary-fluid models at times when the two systems have
the same global damage as determined by the /2 norm. In
either case, the damage envelope is at least exponentially
bounded, and appears to scale with (k) ~!. That is, the
range of effect of local perturbation to distant subsystems
spreads like the growth of the domains. The hydro-
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FIG. 11. Plot of the /2 norm of the damage plotted against
(k) of samples. The norm of the damage grows approximately
linearly with {k ) ~! asymptotically.
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FIG. 12. Plot of the damage envelope and estimated error
bars for time step 1000 of a binary-alloy dynamics simulation.
There were eight samples of size 64° used.

0.0001
0

r <k>

FIG. 13. Plot of the damage envelope for binary-alloy dy-
namics. The r axis is scaled by (k). Time steps 10003000
scale reasonably with a faster than exponential decay. In this
figure and Fig. 14 the wavy form of the earliest time data indi-
cates the concentric perturbation ripple running through the
system due to the conservation law.
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FIG. 14. Plot of the damage envelope for the binary fluid, re-
moving any data from r >24. Note that the maximum r is 32
for these simulations.
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FIG. 15. Comparison between damage envelopes of binary-
alloy and binary-fluid dynamics, compared when the /? norm of
the damage is roughly the same. Note that the binary-fluid en-
velope is much shallower, but is still exponentially decaying.

dynamic model spreads out the damage more evenly than
the ordinary system, with a generally lower amount of
damage near the damage center, but with a tail that
tapers off at a much slower exponential rate. This is con-
sistent with the large-scale flow observed in binary-fluid
systems.

Hence, beyond the average pattern size (k) !, the
lack of correlation due to the uncorrelated initial condi-
tion is maintained. We may conclude that there is statist-
ical independence of subsystems of size L;> (k) !(t).
This is not as trivial as one might think; since a small
point damage is like a small seed in a uniform unstable
state, we see that concentric perturbation ripples run
throughout the system, as can be seen from the earliest
time data in Figs. 13 and 14.

V. CORRELATION FUNCTION AND FORM FACTORS

A. Binary alloy at critical quench

We will now describe our study of a symmetric binary
alloy via the CDS spinodal model. A preliminary report
has been published in [30]. In our study we have four
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1923 samples. The map we used was (28) with 4 =1.15
and D =0.7. The map that was actually used in the
simulation was a simple approximation to the tanh map.
Due to the nature of the approximate map the fixed point
for the above A was ¢, =11.015. Each sample was
started from random initial conditions uniformly distri-
buted in [—0.05,+0.05]. Each sample was run to
tcps =20000 and periodically sampled to generate the
spherically averaged scattering function and calculate
(k) as explained in Sec. IIB. Figure 16 shows a three-
dimensional picture of the y¥y=0 isosurface over various
time steps.

In Fig. 17 we show the evolution of the probability
density distribution of i for one sample over time. We
note that at the latest time shown, the system has clearly
separated into two distinct phases. At the earliest time
shown, ?-pg = 1000, the phases are not yet well segregat-
ed, and the peak of the distribution is not close to the
bulk equilibrium value. However, as we will demonstrate
in what follows, the asymptotic structure of the patterns
is essentially set even at this early time.

In Fig. 18, we display the correlation function G (r)
over various times using a simple rescaling G (p)=G (r),
where p=r{k ). Away from the origin, G (r) appears to
approach a scaling form, as seen in Fig. 18. A better way
to examine G (p) is to look at p?’G(p), the integral of
which is «S(k=0). We note that p?’G(p) is more
representative of the details of the system as perceived by
the scattering function. In Fig. 19 it appears that the
data are converging, at least in the region of p <12, to a
universal form. Beyond p>7, the data from the latest
time, tcpg=20000, appear to deviate away from the oth-
er data. However, one must remember that at this time
step, (k)~0.25, so that p=20 corresponds to r =80,
which is roughly the limit on computing G (7) due to the
system size. In this instance, the conservation constraint
and finite size of the system cause »2G(r) to distort at
large r.

We note that from the above observations that G (r)
does appear to be asymptotic of intermediate r at times
before G (0)=~1. If it were not for finite-size effects, one
might suppose that scaling improves as r is larger. At
small », G(r) is affected by the finite width of the inter-

FIG. 16. 4=0 isosurfaces of three-
dimensional binary-alloy spinodal decomposi-
tion at critical quench. Parameters are
Mcps=1, Dcps=0.7, and 4 =1.15 for the
tanh map described in text. System size is
192%. The images are a 128° subset of the en-
tire sample. From top left to right, images are
of tcps = 1000, 2000, and 4000 data, and, from
bottom left to right, of #-pg =7000, 12 000, and
20000 data.
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FIG. 17. Probability density distribution of ¢ for the binary-
alloy model, taken from a single 192° sample. Notice that for
tcps = 1000 the distribution peak is well below the bulk equilib-
rium value of 1.015.

face. Recall that ¥2, —G(0,2)~&(k). If we can re-
move the influence of the finite interfacial width, scaling
of G (r) may be improved.

We conjecture a stronger version of the scaling hy-
pothesis [30]: the physically relevant length scales that
determine the form factor in the preasymptotic regime
are the domain size and domain-wall thickness. Opera-
tionally, if we apply the transformation ¥—sgn(y), the
effect of the wall thickness on the correlation function
will be removed. Data so processed will be called ‘““har-
dened.” If the stronger scaling hypothesis is correct,
then the correlation function based on the hardened data
should become time independent, and the resultant
universal function can be interpreted as the asymptotic
form. The hardening transformation can violate the con-
servation law, so that the form factor may not vanish at
k =0 after hardening. However, the extent of the viola-
tion is extremely small at later times.

In Fig. 20, we see that the scaled G(p) for hardened
data does indeed become very nearly time independent
over the same range of time as we showed in Fig. 18. If
we look at p?G (p) for the hardened data as in Fig. 21, we

1.0 : , : : —
\ |
0.8 1\ —— 1000 1
3000
0.6 -\ - - -~ 7000
= \ ~—- 11000
& 04 \ —-— 15000 !
3 —— 20000 |
02 |
0.0 +
02 Lo : S i
00 20 40 60 80 100 120 14.0

p=r<k>

FIG. 18. Plot of the scaled correlation function G (p) for the
binary-alloy model. The peak of G(p) is still 10% away from
saturation at fcpg =20 000.
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FIG. 19. Plot of p*G(p) for the binary-alloy model. Note
that the finite system size affects the tail of G(p) at tcps =20000
significantly. (k)~0.2 at this time step, thus p=15 corre-
sponds to » =75, which is nearly half the system size.

see that the data clearly collapse to a master form for a
very wide range of p=r{k ). Except for the latest time
studied, ?-pg =20 000, all the data collapse over the range
0=<p=<12. If we are correct in interpreting the break-
down of G(r) at large r as due to finite-size effects, we
have confidence that our hardened data at topg=1000
may in fact give us a good look at asymptotic G(p) for
the range 0<p <20. Comparing p’G (p) of the hardened
data at tcpg =1000 and 3000 with the unhardened data at
tcps =15000, we note that the hardened data coincide
for most of the graph with the regular data at
tcps = 15000 up through p~15. We recall from Fig. 17
that the data at ¢-pg=1000 is very clearly not well phase
separated, and that the bulk of the domains is not yet
well equilibrated. Thus it is remarkable that asymptotic
features are actually present in the system.

Next we consider the scaled form factor,
F(Q)={k)3S(k), where Q =k/{k) for both regular
and hardened data. Figure 22 shows the regular form
factor. Scaling of the form factor is fair, with a small
shift at later times. The reason for the continued evolu-
tion of the form factor is easy to see in the plot of
Q*F(Q) or Porod’s plot. Figure 23 shows that the large

1.0 . : . . —
'i
08 —— 1000 ]
3000 1
06 -~~~ 7000 j
~ — - 11000 f
5 04r ~ - — 15000 1
, —— 20000 1
02 |
0.0

-0.2 1 1 i i
2 4 6 8 10 12 14

p

FIG. 20. Plot of G(p) of hardened binary-alloy data. Note
that the curves from each time step are nearly indistinguishable.
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FIG. 21. Plot of p?G (p) of hardened binary-alloy data. Even
at this level, we have very good scaling up through p=15 for all
time steps except 20000. This is probably due to the finite size
of the system coupled with conservation, which forces the
p>G(p) to be somewhat contorted.

k tail of Q*F(Q), for the regular data is continuing to rise
with time. If one thinks of the preasymptotic pattern as
being generated by mollifying the hardened pattern, for
example by convoluting a Gaussian function, then the
drooping tail is generated by the multiplication of S (k)
by exp(—£2k?), where £ is roughly the wall width. As
the system coarsens, the exponential decay is fhited to
higher and higher x since it is fixed in k. This would lead
to a rising tail.

In Fig. 24, the scaling of the form factor of the har-
dened data is much better throughout the entire time
range 1000-20000. The difference in the form factor be-
tween the regular and hardened data is not very striking,
but it is systematic. This difference is consistent with the
shift in the form factor for the regular data between the
early- and late-time data. In the Porod plot of the har-
dened data, Fig. 25, a clear time independence of the har-
dened F(Q) for 0=Q <4.0 after ¢t pg=5000 is demon-

40 — :
N % o 1000
3 = 2000
30 - o * 3000 7
“ 2 44000 ;
22 <5000
T o0 - 2 % © 10000
o s © 12000
4 % © 14000
10 + 5 b A 16000 . 4
> L) < 18000
m@‘i; Y v 20000
0% 1 2 3
Q

FIG. 22. Plot of F(Q)=(k)3S(k) vs Q=k/{k) over vari-
ous time steps for the binary-alloy model. Black filled symbols
are for early time data, time steps 1000—5000. White filled sym-
bols are for late time data. Note that there is a shift in the form
factor from early to late times.
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FIG. 23. Plot of Q*F(Q) for the binary-alloy model. Dark
filled circles are for combined ¢cps=1000-5000 data. White
filled circles are for time step combined 10000-20000 data.
The tail continuously evolves upward over time. This evolution
explains the slight shift in the form factor from early to late
times. Due to the slow growth law, we cannot expect to see a
Porod’s tail in a reasonable computational time.
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FIG. 24. Comparison plot of F(Q) between regular and har-
dened data. The shift between the regular and hardened data is
consistent with the shift we saw for early to late times in Fig. 22.
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FIG. 25. Porod’s plot Q*F(Q) vs Q of both regular and har-
dened data. Note that the regular data high-k tail rise
significantly throughout Q > 1.5 while the hardened data con-
verge toward a scaling form.
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strated as stated in our previous paper [30]. Choosing
the latest time available from the hardened data, we find
that the Tomita sum rule holds very well with the asymp-
totic value of Q*F(Q) at Q ~5. The anomalous tail in
the hardened Porod’s plot is due to the discrete nature of
the system. After hardening, the domain walls are very
jagged. This jaggedness length scale shifts away in F(Q)
as (k) decreases, as we see at subsequent times in Fig.
25. Looking at both the regular and hardened data in
Fig. 25, we see that there appears to be a convergence to
a form between the hardened and regular data.

The extensive scaling of the hardened data demon-
strates our stronger scaling hypothesis. Thus we feel that
the hardened form factor does in fact represent the main
features of the asymptotic form factor. The most notable
feature of the Porod plot is the second peak located at
about k =2.9{(k ). The Porod tail is due to the random,
smoothly varying, infinitely thin interfacial wall. The
first-order deviation is due to the local curvature. Hence
the second hump represents a nontrivial set of curvature
fluctuations, at a scale smaller than the main pattern size.
It is also)very likely that we have a third peak at around
k=5(k).

Figure 26, the log-log plot of F(Q) for the regular data,
shows a very clear F(Q)~Q* behavior for small Q
(Yeung’s power law form). Interestingly, the Q* behavior
appears to hold from about Q =0.3 or 0.4 on.

To extract the most self-consistent information for
G (r) and S (k) from all the available data, we put togeth-
er a collage of data, along with the asymptotic estimates
for the small- and large-k behaviors of S (k) and small-r
behavior of G (r). This is done in three parts.

(i) For small r and large k, Tomita generalized Porod’s
law to account for the curvature of the interfaces and
found Egs. (2) and (3). The hardened S (k) data suffer at
large k from the discrete nature of the patterns. Howev-
er, G(r) scales well at small » and allows us to fit the
small-r behavior to the form of Eq. (2). To accomplish
this, we look closely at the hardened G (r). To see the
small-r behavior best, we plot E (p)=[1—G(p)]p~ ! (Fig.
27). This should have the form of E(p)=cy,—cp>

+c,p*— - -+ . Several different time steps plotted in Fig.
10 ¢
1 L
<) 0.1 ¢
(rag
0.01 - ge = 1000-5000
A © 10000-20000
0001 | 9~
0.0001 ————! -

FIG. 26. Log-log plot of F(Q) vs Q for regular binary-alloy
simulation data. The small-k region is consistent with the k*
hypothesis. For 0.4 <Q <0.8, the form factor is even steeper
than k*.
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FIG. 27. Plot using hardened data of [1—G(p)]p~'. Data
from time steps 1000, 2000, 3000, 4000, 5000, 7000, 11000,
15000, and 20000 are plotted. Scaling is very good, as expect-
ed. In general, the peak of the curves drops as the tcpg in-
creases, but it is not very noticeable here. Using this data, we
may extract 4, the area density of the interfaces, and R2,.

27 exhibit a small but systematic evolution. To estimate
the asymptotic values of ¢, and c¢;, data from each time
step are fit to the above form, and the obtained ¢, and ¢,
are plotted versus (k) (Figs. 28 and 29). From this we
estimate that c¢,=0.368, and ¢; =0.0044. We can mea-
sure A and RZ in units of (k) as 4 =(4/A¢?*)c, and
R2,=cy/(12¢,). We estimate that 4 =0.368{k ), and
RZ%,=7.0(k )2 In turn, this allows us to compute the
large-x behavior of F(Q) asymptotically. Plotting (3)
versus the hardened data in Fig. 30, we see that the tail of
F(Q) matches extremely well for the latest times avail-
able from Q >5. Thus the Tomita form will be used for
the tail of the collage F(Q).

(ii) The slight nonconservation of the order parameter
due to the hardening causes distortion of F(Q) for small
Q. For 0.8 <Q <5 the hardened form factors scale well.
Hence, for intermediate Q consistent with the above tail

0.38 r . : :
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2 037 ____-%ew®®® ;
kS ---C
Q
=
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o
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0.35 1 1 1 i I
00 01 02 03 04 05 06
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FIG. 28. Plot of the constant term ¢, vs (k) of E(p) de-
scribed in the text, determined by a least-squares fit to data in
Fig. 27. Black dots are fitted values. Linear regression,
represented by the dashed line, is used to estimate the asymptot-
ic value of ¢, to be 0.368.
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FIG. 29. Plot of the constant coefficient ¢; vs (k) of E(p)
described in the text, determined by least-squares fit to data.
Black dots are fitted values. Linear regression, represented by
the dashed line, estimates ¢, =0.004 37.

of F(Q), we use the hardened data of F(Q) for
0.8<Q<5.

(iii) For small Q, we arbitrarily use the regular F(Q)
for Q <1.5. That done, we extrapolate further by match-
ing 20Q* to the numerical data to generate the small-Q
region.

We merge the sets of data together. Features (ii) and
(iii) are merged by matching the overlapping peaks of
F(Q) from each part. All the numerical data is smoothed
by a cubic-spline smoothing routine, and a final numeri-
cal form factor is generated with small- and large-Q
behaviors obeying the known asymptotic laws. The re-
sults are shown in Figs. 45-47 with the corresponding
binary-fluid results. An interesting result of this exercise
is G(p). We now can compare the collage G (p), which
should not suffer from any finite-size effects, with the nu-
merical data. Again, to critically compare G (p), we look
at p?G (p). This is done in Fig. 31. The collage G (p) in
comparison with the numerical data indicates the limit of
our resolution of G(r). The agreement is very good
through the range r{k ) <10, and, sensibly, the large-p
behavior of the collage G (p) is intermediate to the wildly
varying numerical data.

40 f T T Y" T
% < 5000
30 1w & 7000
S < 11000
5 o< v 15000
o 20 &g > 20000 .
o v 8 Tomita estimate
g B

FIG. 30. Plot of hardened Q*F(Q) data vs small-Q generali-
zation of Porod’s law due to Tomita. Note that the latest times
appear to merge with the asymptotic estimate at about Q =5.
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FIG. 31. Plot of p>G(p) of collage data, compared to data
obtained directly. The decay of the large-r region of G(r) is
comparable to that of the hardened G (r) data of time step 1000.

B. Binary fluid at critical quench

In our study of binary-fluid spinodal decomposition,
we use the CDS hydrodynamic model, [(21) and (22)]
with velocity update skipping. We have four 1923 sam-
ples in the study. The map is the same approximation to
the tanh map as was used in the binary-alloy study. The
parameters are A4 =1.3, D=0.7, MAt=1.0, and
n/At=1.0. The fixed points for the map are
Ppu =1 1.047. Each sample is started from random ini-
tial conditions uniformly distributed in [ —0.05, +0.05].
Each sample is run to ¢cpg =7500 and sampled every 250
time steps to calculate G (r) and S (k). Figure 32 shows a
three-dimensional picture of the isosurface =0 over
several time steps. Comparing with Fig. 16, we see that
the fluctuations in the thickness of the patterns are larger
than in binary alloys.

The evolution of the probability density distribution of
¥ is plotted over time in Fig. 33. At the earliest time
plotted, t-pg =500, the system is not yet well separated.
Figure 34 shows the evolution of G (p) over time. The re-
sult of the hardened G (p) is plotted in Fig. 35. At this
level, the scaling holds remarkably well, but, in detail,
some subtle deviations can be found. Finite-size effects
can clearly be seen for t-pg=3000 from the plot of
p*G (p) in Fig. 36.

Close inspection of p?G (p) in Fig. 37 shows that there
are two different groupings of data. The early-time data
from t-pg=3500 and 1000 are clustered away from the
rest of the data. The Ilater time data from
tcps = 1500-3000 do not quite stabilize into a scaling
form, although they cluster distinctly from the earlier
time data. This is probably an evidence of a slow cross-
over behavior discussed in Sec. VIB.

In Fig. 38, we plot F(Q)=(k)3S(k) versus
Q =k /{k) over a range of time. Due to the effectiveness
of flow in coarsening the domains, we are able to see a
wide range of (k) !. Note in this figure that there are
only three points about the peak at the latest times
shown. The conventional (k) can be distorted by the
resolution of the peak of S (k). As presented above, this
is why we wish to use a (k) which is not badly affected
by the discrete nature of the spherically averaged S (k).
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Examining the probability distribution for the order pa-
rameter (Fig. 33) shows that at #-pg =500 the order pa-
rameter is not well separated into different phases. The
hardened form factor appears to scale well from times as
early as time step 500. However, closer examination of
the hardened form factor using the Porod plot in Fig. 39
shows that t-pg=500 does not quite scale with later

times for Q>2. This is not unexpected from the
behavior of G(p). The other time steps appear to scale
reasonably well for this quantity. The second hump in
the Porod plot is now located at k =2.7{k ).
Examination of a log-log plot of the hydrodynamic
form factor in Fig. 40 shows that the small-k behavior is
nearly fit by k%> for Q <0.5. However, the exponent ap-
pears to be decaying toward k* at smaller Q. The small-k
behavior has not been determined theoretically for the
hydrodynamic model. If we assume that S (k) is analytic
about k =0, then the exponent must be 4 as long as the
large-scale isotropy is preserved by the dynamics, as
shown by Tomita [35]. Damage spreading in the binary-
fluid system is contained by an exponentially decaying
form similar to the binary-alloy case. Hence it is unlikely
that the binary-fluid model induces inhomogeneities

Probability(y)
n
o
o

1.1

FIG. 33. Probability density distribution of 1 for the 1923
binary-fluid system described in the text. Note that
Ypux==11.04. The bulk phases are well formed around
tCDSZISOO.
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FIG. 32. ¢=0 isosurfaces of three-
dimensional incompressible binary-fluid spino-
dal decomposition at critical quench. n=1,
Mcps=1, and Dcps=0.7, using the tanh map
described in the text with 4 =1.3. System size
is 1923, The entire 1923 sample is exhibited.
From top left to right, images are of
tcps =500, 1000, and 1500 data, and, from bot-
tom left to right, of #-ps=2000, 2500, and
3000 data.

significantly greater than the binary-alloy dynamics, and
is thus likely to obey the k* hypothesis.

As in the binary-alloy case, we extract more informa-
tion from the small-scale behavior of G (p). Figure 41
plots E(p)=[1—G(p)]p~!. To see in detail the evolu-
tion of E (p), Fig. 41 shows a close-up view of E (p). This
data is fit to E(p)=cy—cp>+c,p* using least squares.
The coefficients ¢, and ¢, are plotted versus {k ) in Figs.
42 and 43 and the asymptotic values are estimated by
linear regression. The data for ¢, and c¢; show steady
evolution as in the binary-alloy case, until about
tcps =2250, which corresponds to about {k)=0.14.
After this, the values of ¢, and ¢; fall. This is likely to be
due to the finite-size effects that are affecting the large-p
region of G(p). In our analysis no special care has been
taken for the data after ¢-pg=2250 (the effect is at most
5%, if any).

Ignoring time steps later than 3000, we estimate that
the asymptotic value of ¢, =0.38 and ¢, =0.0070. The
possible finite-size effect which affects the last few data
points should not alter the values by more than +3% for
co and £10% for c¢;. This translates into 4 =0.38(k)
and R%=4.5(k)”% Note that R?% is significantly

1.0 T T T T

0.8 |

G(p)

o 2 4 6 8 10 12 14
p=r<k>
FIG. 34. Plot of G(p) at various times for the 192° binary-
fluid system. Due to the rapidity of the coarsening, the data for

tcps = 3000 only go to p~11, which corresponds to r ~90, the
limit of half the linear system size.
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FIG. 35. Plot of G(p) of hardened binary-fluid data. Scaling FIG. 38. Plot of form factor F(Q)={k)3S(k)vs Q=k /{k)
looks reasonably good for this function. for times ranging from ¢cpg=2000 to 4500. Scaling appears to
be well obeyed over the entire time range.
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FIG. 36. Plot of p?G(p) of hardened binary-fluid data. Un-
like for the binary-alloy model, there appears to be some evolu- FIG. 39. Porod’s plot of the hardened binary-fluid form fac-
tion of the first minimum over time. There may be some type of tor.
crossover in the dynamics.
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FIG. 37. Close-up plot of the first minimum of p’G(p) of Q
hardened binary-fluid data. Note that for ¢-ps =500 and 1000,
the data cluster away from the later time data. The data for FIG. 40. Log-log plot of the binary-fluid form factor (regu-
tcps = 1500 and later appear to belong to another cluster which lar) at various time steps. Note that at the latest times available,

slowly evolves. the form factor approaches a Porod’s tail form for large Q.
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FIG. 42. Plot of the constant term ¢, of E(p). The general
trend is downward. The black dots are the coefficient from the
least-squares fit, and the dotted line is the linear regression
which estimates that, asymptotically, ¢, =0.381. The last few
points may be very much affected by the finite size of the sys-
tem.
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FIG. 43. Plot of the coefficient ¢, for the p? term in E(p).
Black dots represent the data least-squares fit, and the dashed
line is the linear regression which estimates asymptotically that
¢;=0.0070. Note that the general trend is upward as {k ) —0,
but that the last few points behave like data taken for ¢, in Fig.
42.
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FIG. 44. Porod’s plot of hardened data, and the Tomita esti-
mate for the large-wave-vector tail of S (k) using 4 and R2,.

smaller than the value for the binary-alloy model for the
same area density of interfaces. This is consistent with
the more uneven looking configuration of the domains
(Fig. 32). Large curvature regions occur together with
small curvature regions, in contrast to a fairly even distri-
bution of curvatures seen in the binary-alloy case. This is
probably due to the stretching and compressing of tube-
like domains under fluid dynamics. Figure 44 shows the
hardened Q*F(Q) data plotted with the Tomita estimate
for large Q using 4 and R,,,.

We form a collage F(Q) and G (p) the same way as in
the binary-alloy case. From Fig. 40 we estimate
F(Q)=41Q* We put together the hardened data for
0.8 < Q <5.0, discarding points that did not scale due to
the jaggedness after hardening. Finally we used the Tom-
ita estimate for Q >5. Data were merged together using
a cubic-spline smoothing routine. The binary-fluid col-
lage form factor is plotted in comparison to the binary-
alloy form factor in Fig. 45. We note that the ratio of the
peak half-width to the peak position is 0.45 for the binary
alloy model and 0.54 for the binary fluid. Figure 46
shows a Porod plot, and Fig. 47 shows a log-log plot
comparing the binary-alloy and binary-fluid collage form
factors. Larger pattern thickness fluctuation in fluid sys-
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FIG. 45. Comparison plot of collage F(Q) for binary alloys
and binary fluids. Note that the fluid system has a broader form
factor.
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FIG. 46. Comparison plot of collage Q*F(Q) from binary-
alloy and binary-fluid simulations. Fluid dynamics spreads out
the fluctuations about the main peak in comparison to the
binary-alloy dynamics, and the secondary peak is more diffuse.

tems is clearly reflected in the form factor.

The scaling of the form factor could be dependent on
the viscosity of the fluid. In the case of binary-fluid phase
separation in a Hele-Shaw cell [31], we found that the
scaling form factor depended systematically on the factor
M, where M is the mobility, even when all other param-
eters of the system were fixed. In this case, the fluid dy-
namics and diffusive dynamics coarsened the system with
the same asymptotic growth exponent as determined by
dimensional analysis, so the balance between the two
mechanisms determined the form factor. In the free 3-
space fluid case, the fluid dynamic mechanism is clearly
the dominant one for coarsening the system. Therefore,
it might be reasoned that, at late times when fluid dynam-
ics dominates, there is universal behavior independent of
the factor M7. Hence we would believe that the form
factor is not affected by changing the viscosity with all
other parameters fixed.

We make a cursory inspection of this issue by compar-
ing the collage form factor F(Q) versus the hardened
F(Q) measured from a single 128% run with 7=2.5 and
all other parameters identical to our main 1923 run with

n=1. In direct comparison with F(Q), we do not see
100 e
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0.01 . / 1
0.1 1 10

Q

FIG. 47. Log-log plot comparing collage F(Q) for binary-
alloy and binary-fluid simulations.
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FIG. 48. Porod’s plot comparison of collage F(Q) for binary
fluid with =1 vs hardened F(Q) data from various time steps
of a 128° system with p=2.5, all other parameters being kept
the same as in the =1 simulations. Although finite-size effects
may be significant in the 1283 simulation, the difference is con-
sistent with the subtle dynamical differences described in Sec.
VIB.

much difference. Figure 48 compares the Porod plot of
the n=1 collage form factor and the 7=2.5 form factor.
The data from the p=2.5 run generally follows the n=1
collage form factor. There is a small but systematic shift
upward of the valley region at about Q =2 in exchange
for a slight decrease in the main peak at later times for
the p=2.5 data versus the collage F(Q). Without more
data at longer times and large system sizes, we may not
be definitive on this. However, as we will see in Sec. VIB
there is a good reason to believe that the 7=2.5 system is
dynamically better (or sooner) able to approach a true
asymptotic regime than the n=1 system. In any case, it
appears that the asymptotic form factor is invariant with
respect to changing 7.

C. Velocity-velocity correlation

Although the velocity field v is modeled as a slaved
field [see (23)], it is still interesting to check the form of
the velocity-velocity correlation function and check its
scaling. We will look at S,,(k)=(v_;-v,). Assuming
that v scales like / /¢, and that [ ~¢ [65], we estimate that
the average v? is a constant. This implies that
Jd*k{v_,-v;)~C. Using Q =k /{k ), we get a dimen-
sionless function F,,(Q)=(k )3S (k). If scaling holds,
we expect F,,(Q) to be time independent.

The small -Q region of F, (Q) fluctuates wildly from
time to time and sample to sample, and the function de-
cays very rapidly. Scaling is not easy to see. The log-log
plot of F, (Q) is given in Fig. 49, where the smallest k
data point is removed since it is drastically affected by the
finite size of the system and the periodic boundary condi-
tions. We plot data from ¢-pg=1500 and on, since this is
the point where the bulk is well formed, as seen in the
probability distribution of ¢ (Fig. 33). In this plot, we
can see the scaling behavior as predicted. The most in-
teresting aspect is the apparent power-law behavior of the
large- and small-Q regions with a sharp transition in be-
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FIG. 49. Log-log plot of F,,(Q) from tcps=1500 on. The
smallest k& data point was omitted from each time-step datum.
Note that the curves all scale together very well and have a
small-Q behavior of Q ~* and a large-Q behavior of Q ~°.

tween. The small-Q region behaves like Q ~* until about
Q0 =1.7, where it turns sharply over to Q ~° behavior.
The large-k power-law behavior is consistent with a gen-
eralized Porod’s law for a n =3, d =3 vector order pa-
rameter as described by Bray and Puri [36] and Toyoki
[37]. In this case, it is predicted that the large-k region
will behave like kK ") in general, at least for d > n (see
also [66]). The small-k behavior seems clear, but we have
no explanation for the power law. It should be pointed
out, however, that F, (Q) does begin to turn down at
very small Q, although hardly noticeable.

The fact that the form of the velocity field correlation
settles to an asymptotic form is consistent with a type of
scaling regime associated with the morphology of
domains independent of the finite wall thickness. The ve-
locity fields are probably not much affected by wall thick-
ness as long as the wall and the bulk are well formed. We
note that from the probability distribution shown earlier
than this is the case after #-pg=1000, explaining why ve-
locity data from time steps 1000 and earlier did not scale
well. The velocity field has very large small-wave-vector
components. Their effect is easily seen in 3-space visuali-
zations of the time development of a sample. The entire
system appears to be unfolding as it coarsens, and large
regions of the binary fluid move together. Consequently,
domains are sometimes forced to merge or stretched
apart by the fluid flow. Such global flows are strongly
sample dependent, but do not affect the phenomena at the
pattern size scale, so long as L /L, is large.

D. Comparisons with experiments

1. Binary alloy

Ideal binary-solid systems appear to be difficult to real-
ize experimentally. It is necessary to find a system which
is isotropic without any volume change due to composi-
tional change or any concentration-dependent shear or
bulk modulus which would induce strain effects. Figure
50 compares our collage form factors for the binary-alloy
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FIG. 50. Form factors from digitized published data of vari-
ous binary-solid experimental studies. All form factors were
normalized to the binary alloy model peak. The binary-alloy
and binary-fluid model data are the collage F(Q) for critical
quench. The borate glass [16] and Mn-Cu system [13] are criti-
cal quench. The Fe-Cr-Co system [12] is off critical, but ap-
pears to have nearly the morphological structure of our critical
quench studies.

and binary-fluid models against the experimental form
factors from a borate glass system [16], a Mn-Cu system
[13], and an off-critical Fe-Cr-Co system [12]. All the ex-
perimental data were obtained by digitizing data points
from published figures. The authors apologize for any er-
rors in digitizing the published data. All the form factors
were roughly peak normalized to the peak of the binary-
alloy collage form factor.

The borate glass system appears to be an ideal system
in principle. It has no crystalline anisotropy. The data
shown in Fig. 50 are a near critical quench. However,
the growth exponent attained for the critical quench is
only 0.24~0.26. Another odd fact, pointed out by
Craievich, Sanchez, and Williams [16], about the glass
system, is that the width of the form factor decreases and
the asymptotic growth exponent goes from 1 to 1 as the
off-criticality is increased. Other numerical studies [23]
have observed that the form factor width increases with
increasing off-criticality, as have we in small-scale test
studies. The general trend over a large set of studies is
for the form factor to broaden as the system is more off-
critical [67]. Further, in the Fe-Cr study, they note that
the form factor becomes significantly narrower after the
growth law crosses over from } to 1 behavior. This leads
us to believe that the borate glass system may have quite
different dynamics than that of the CH type, or that the
critical quenched glass system is not yet in the asymptotic
regime.

The Mn-Cu system also appears to be suited for com-
parison, since it is believed to have little strain effect.
The growth law appears to be ¢!/3. The form factor for
the critical quench appears to match that for borate
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glass, although both systems have different asymptotic
exponents. In this case crystalline anisotropy is probably
relevant. Spherical averaging of a single anisotropic crys-
tal would certainly broaden the form factor. Even an iso-
tropic scattering function could be due to a macroscopi-
cally isotropic arrangement of anisotropic crystals.
Surprisingly, both the Mn-Cu and borate glass critical
quench form factors are very much the same, although,
as pointed out above, the systems appear to be very
different. They are both significantly wider than either
the binary-alloy or binary-fluid collage form factor.

The Fe-Cr-Co system [12] whose data is plotted in Fig.
50 was off-critical with a minority percentage about 30%.
However, this form factor is definitely narrower than the
above critical quench experiments, and the asymptotic
growth rate appears to be ¢!/3. Ion-field micrographs of
the Fe-Cr-Co system [68] show the characteristic in-
tertwining of domains such as what we observe for the
critical quench, and shows the atomic structure to be
very isotropic. This system may be much more represen-
tative of the ideal binary-alloy spinodal decomposition.
A long-time critical quench study of this tertiary system,
if possible, would be of interest in order to clarify many
issues.

We do not compare any theoretical results [69-71]
with our result because, unfortunately, all violate some
asymptotic theoretical results such as conservation, sum
rules, etc., or cannot be taken seriously at the late stages.

2. Binary fluid

The situation in the binary-fluid case is much better.
The form factor for both simple and polymeric fluids ap-
pears to match reasonably well with our numerical data.
One expects that there are of course no lattice anisotropy
or shear modulus effects. In the case of the polymeric
fluids, extensive and accurate data in the high-wave-
vector region is available.

Figure 51 shows a comparison for the form factor from
an isobutyric acid and water system [17], and from a lu-
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FIG. 51. Plot of form factor data of simple binary fluids digi-
tized from published data in comparison to the binary-fluid
model collage F(Q). Experimental systems plotted are isobu-
tyric acid and water (IW) [17] and lutidine and water (LW) [18].
Form factors are normalized to the peak of the binary-fluid
model form factor.
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tidine and water system [18], both undergoing critical
quench. Both studies report growth laws compatible
with I(¢#)~t. Both sets of data had fairly large fluctua-
tions in the actual form factor measurements, so the digi-
tized data is taken from the published smooth interpolat-
ing fit to the experimental data. Further, the data did not
extend into the large-wave-vector region beyond 1.8(k ),
80 it is not possible to compare Porod’s plots. However,
the data are significantly closer to agreement with the
fluid collage form factor than in the binary-alloy case.

In Fig. 52, we see very good agreement between our
fluid data and polymeric fluid data at critical quench. In
this case, we digitized data from a study of a deuterated
and protonated polymer mixture (D-H) [20], and for a
polybutadiene and polyisoprene (PB-PI) mixture [72].
The data from polymeric fluids is in general of better
quality than the data from binary-fluid and binary-alloy
systems. We note that the curvature of the form factor in
the 1.25(k ) -1.75(k ) region of both polymeric fluid sys-
tems matches that of our binary-fluid model, and is clear-
ly different from the binary-alloy model.

The Porod plot is shown in Fig. 53. Here we normal-
ized the Porod tail to have the same amplitude, and shift-
ed the vertical axis by a constant to set the tail level to
zero. The best-quality data available are clearly in the
PB-PI system, and they are also the closest fit to our
simulation data. At the level of the Porod plot, the
agreement is close but not perfect. The difference be-
tween the binary-fluid collage form factor and the experi-
mental results consists of a shift downward of the main
peak in exchange for a lift in the valley located around
2{k ). Such a difference was also noted in the compar-
ison of our =1 and 2.5 run. As we will see later in the
discussion of the growth law for the binary-fluid model,
this is likely to be an evidence of a subtle preasymptotic
behavior which could occur in fluid systems. To check
this behavior of the form factor quantitatively for the
7=2.5 system, we will need to pursue simulations of size
larger than 256°. The small-k power-law behavior of the
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FIG. 52. Plot of form factor data of polymeric fluid digitized
from published data in comparison to the binary-fluid model
collage F(Q). Experimental systems are a deuterated and pro-
tonated polymer mixture (D-H) [20] and a polybutadiene and
polyisoprene mixture (PB-PI) [72] at critical quench. The form
factors are normalized to the peak of the binary-fluid form fac-
tor.
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FIG. 53. Porod’s plot of polymeric fluid and binary-fluid
model data. Normalization of the peak position was retained
from the previous figure and the height was normalized roughly
so that tail regions coincided. Note the good qualitative agree-
ment between the PB-PI system and the binary-fluid model.
There is a slight systematic decrease in the peak in exchange for
a slight upward shift in the valley at Q ~2. This is probably due
to the nonasymptoticity of our result discussed in Sec. VI B.

form factor has a slightly greater exponent than 4. For
the range of about 0.65(k )-0.9(k), the D-H system
was measured by Bates and Wiltzius to have a behavior
of S(k)~k*?, which is in agreement with our findings as
shown in Fig. 40.

Recently, Takenaka, Izumitani, and Hashimoto [52]
demonstrated that all of the growth laws they found for a
PB-PI system can be collapsed by appropriate time and
length scale changes. The required changes are molecu-
lar weight dependent, but we may conclude, as discussed
in Sec. III B, that polymer effects so far observed are all
quantitative in the sense that they can be scaled out.

We are satisfied that we are on track to capture the ex-
perimental situation of critical quench binary-fluid
decomposition, though we are not so satisfied in the
binary-alloy situation. It is clear that the Porod-type plot
is valuable in identifying subtle differences in experimen-
tal systems and numerical simulations. We hope that fu-
ture experiments, particularly with solid systems, will de-
tail enough data to successfully discern the form factor at
the level presented here.

VI. GROWTH LAWS

A. Growth law of the binary-alloy system

While the asymptotic growth exponent of 1 is general-
ly accepted for spinodal decomposition in binary-alloy-
like systems without strain effects, computational studies
have fallen short of showing explicit asymptotic behavior.
Upon close examination, we find, for example, that the
effective exponent appears to be systematically less than
4 during the range of the simulation. A simple linear fit
to the plot (see Fig. 54) of the effective exponent
a=—01In{k ) /31nt versus { k ) can sometimes project an
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FIG. 54. Plot of the effective exponent of the 1923-sized, tanh
map system with 4 =1.15 and D =0.7. White symbols are
measured effective exponents for the four different samples.
Dispersion-relation-based growth laws with C’'=0, 0.015, and
—0.015 are superposed to illustrate the range and nature of
variation of the growth law determined by the single parameter.
These data are already in the strongly fluctuating regime due to
the finite-size effect, as we see comparing with the subsequent
figures, so no definite match is allowed, but the plotted growth
law explains the leveling off of the exponent at sub-% value.

asymptotic exponent close to +, but this is not at all satis-
fying. The fit depends crucially on the time range of the
points chosen to be fit, and the linear extrapolation is not
justified when the empirical exponents are significantly
less than % Due to the finite size of the system, a fluctu-
ates more and more dramatically at late times, or for
small (k). However, at earlier times, {k ) does not ap-
pear to fall well on the linear extrapolation. Choosing
only very late times for the fit leads to extremely unreli-
able results. Choosing all times tends to make the fit pre-
dict a too small asymptotic exponent. Thus we need a
better understanding of the preasymptotic behavior of
the growth law.

Since the order parameter is conserved, in order for the
morphology to change, there must be order-parameter
transport. This is essentially a diffusion process, so its
characteristic time is /(z)?, which is much smaller than
that for the pattern coarsening. Hence, once the system
is settled into some sort of self-consistent morphology,
and scaling begins to occur, the entire morphology is
governed by the strengths of sources and sinks of the or-
der parameter which are the small fluctuations of the in-
terface. The most natural consequence is that the decay
rate of the relevant fluctuations at the interface deter-
mines the evolution of the system, so, on the average,
o(k,)~t~! determines the (pre)asymptotic growth law,
where w(k) is the dispersion relation of the (flat) inter-
face, and k, is the representative wave number of the in-
terface fluctuation governing the evolution. We allow
there to be a constant #, which accounts for an initial
offset of the growth law due to the noncoarsening initial
stages of decomposition. We already know that the scal-
ing of the form factor is very good in the preasymptotic
regime, so k, must be proportional to {k): k,=B(k).
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This wave number must be larger than k), because this
must corresponds to the fluctuations on the curved inter-
face whose curvature radius is, on the average, I(t). We
use the flat interface dispersion relation for the same
reason. Thus we get a growth law

t—to=Caw(B(k)) ", 45)

with an appropriate constant C. When we look at a Po-
rod plot of the hardened form factor (Fig. 34), which
starts to scale well before the regular form factor does, we
notice the large second hump roughly at k,=2.9¢(k).
We hypothesize that this reflects a characteristic set of
small fluctuations from the smooth interfacial wall. Thus
we choose k,=2.9(k ) to be a sort of constitutive equa-
tion.

Recently [39], we have found that the linear dispersion
relation for the relaxation of fluctuations on the interface
governed by the CH-type equation has a near-universal
form dependent on the local free energy only through the
interface thickness calculated by

[f_:dz Y'(z) ?
YRR o

where 1 is the kink solution. The dispersion relation for
k&< 1.0 is very nearly of the form

w(k)=Mk3é(l+ck§) , (47

where ¢ =0.66=~2/3, k is the wave vector of a small fluc-
tuation on a flat interface, and M is the mobility of the
system. From (45) and (47) we can calculate the effective
exponent as a function of (k) as

_3+2B(k)E , 3+2B(k)&
a({k)) 98B k)E 1+C'(B(k)) 3E ,

(48)

where C'=CMt,. Here we computed & with a discrete
version of (46), numerically solving for an equilibrium
wall configuration.

We compute the effective exponent for actual simula-
tions by

(k) (1) t,—t_, :

We try a one-parameter fit to (48) of the empirically ob-
tained exponents using C' described above. In practice,
we do the fit by eye. At this point, we do not attempt a
strict quantitative analysis since the measured effective
exponents are very noisy, but we wish to investigate the
validity of the above formulation and its relationship to
scaling.

We do the fit for our main 192° simulation using the
tanh map described before. The simulation parameters
are A =1.15, D =0.5, and M =1.0. This gives £=1.39
in lattice units. In Fig. 54, we see that the effective ex-
ponents calculated from each of the four samples fluctu-
ates considerably, but that they are consistently below 1.

al{k ) ()~ 49)
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The linear fit estimates a=0.301. While the fluctuations
do not allow a definitive match, the plotted growth law
with C'=0, 0.015, and —0.015 are consistent with the
raw data. This explains the leveling off of the exponent at
a sub-1 value, preceding a steady rise toward 1 which is
beyond the capability of our computation to attain. The
fit does not look very good in this case because for these
data (k) is already too small, as we will see generally
below.

Figures 55-57 demonstrate that the above finding is
not fortuitous. Figure 55 plots the effective exponent for
the tanh map system of 4 =1.3 and D =0.7. This is an
extreme case where the measured exponent has an early
maximum of 0.38, then a dramatic fall to a minimum of
0.30. Using the single adjustable parameter, we can suc-
cessfully match the effective exponents even in this case.
It should be noted that the single parameter does not al-
low very much freedom in generating the effective ex-
ponent curve. Figure 56 plots the effective exponent for a
single D =0.7, 128 sample for the model with the fol-
lowing piecewise polynomial map:

1.25¢—0.15¢° if 9] <0.7319 ,

7 =
= 0,20 +sen(9)0.8 ifly]>0.7319 . (50)

This gives £=1.71 for D =0.7 and 2.16 for D =0.8.
Empirically we guess that the effective exponent for sin-
gle 128%sized systems are well behaved until roughly
{k)~0.3 or 0.4. This is consistent to the fact that for a
set of 64° samples we tried, the effective exponent for the
samples was already quite spread out by (k) ~0.6. Fig-
ure 57 plots the effective exponent for two 1283 piecewise
polynomial systems with D =0.8. One sample was al-
lowed to run beyond {k ) =0.3 and shows severe fluctua-
tions after that point. The two systems are fairly close to-
gether until (k) =0.3.

In the above instance, the theoretical curve models the
effective exponent after a certain (k) or time. It is in-
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FIG. 55. Plot of the effective exponent of the 128%-sized, tanh
map system with 4 =1.3 and D =0.7. White circles are mea-
sured effective exponents for the sample. The dispersion-
relation-based growth law is plotted with C'=0 as reference.
Growth is also plotted using C’'=0.04, 0.06, and 0.08. For the
range (k) <0.55, these curves capture the behavior of the
growth exponent. Note that data start to fluctuate significantly
at around {k ) =0.35. We attribute this to a finite-size effect.
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FIG. 56. Plot of the effective exponent of the 1283-sized sys-
tem using a piecewise polynomial map system with D =0.7.
The black symbol is for the 128° sample. The dispersion-
relation-based growth law is plotted with C’'=0, 0.02, 0.03, and
0.04. Agreement with the growth law starts at approximately
(k)=0.55. At ~(k)=0.3, the growth law starts to fluctuaie
significantly.

teresting to see what importance is embodied by the start
of agreement between the dispersion curves and the data.
To do this, we generate more data to test the theory using
the two piecewise polynomial maps. In addition to
measuring {k ), we gather the hardened G(r) data to
check scaling. To quantitatively check the scaling of
G (r) in a concise manner, we simply monitor the value of
the first minimum of the hardened G (r) and plot it versus
(k). Ideally, the minimum should settle to a constant
value if G (7) is scaling.

In the D =0.7 case, the theoretical growth law starts
to agree with the measured effective exponent at about
(k)=0.6. For the D =0.8 case, this agreement starts at
about (k)=0.4. In Fig. 58, the value of the first
minimum of the hardened G (r) is plotted for the two
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FIG. 57. Plot of the effective exponent of two 1283-sized sam-
ples run using the piecewise polynomial map system with
D =0.8. The white symbol represents the effective exponent of
one sample allowed to run out beyond (k)=0.25. The other
sample ran only to (k)=0.25, but was used to collect G(r)
data. The dispersion relation is plotted with C’'=0, 0.07, 0.09,
and 0.11.
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FIG. 58. Plot of the value of the first minimum of the har-
dened G(r) for the single 128° sample run using the piecewise
polynomial map with D =0.7 and the shorter of the two
D =0.8 runs. —O0.11 is roughly the value of the minimum when
G (r) is scaling. Note that —0.11 is achieved for both systems at
the (k) at which they respectively start to agree with the
growth laws based on the dispersion relation, as pointed out by
the arrows in the figure.

different D values. Note that for the D =0.8 or £=2.16
case the minimum approaches a plateau at about —0.11.
This plateau starts at about {k ) =0.4. For the D =0.7,
£=1.71 case, the minimum passes —0.11 at about
(k)=0.6 and fluctuates about that value. The fluctua-
tions of the first minimum away from —0.11 roughly cor-
respond to regions where the effective exponents fluctuate
away from the most likely theoretical curve. Near
(k)=0.3, the measured effective exponent starts to be
very much affected by fluctuations, and correspondingly,
G (r) deviates away from its scaling form as noted by Fig.
58. We suspect that some of these large excursions may
be due to the abrupt change in the Euler characteristic of
the system as it coarsens. For small systems the genus of
the pattern is relatively small, and the loss of a connect-
ing tube probably has greater effect in such a situation
than in a large system with a large genus. Nonetheless, it
appears that the start of good scaling corresponds with
the start of agreement with the dispersion relation.

Thus a consistent picture has emerged. The growth
law, beyond the point scaling starts, is governed by the
decay rate of the small fluctuations of the interfacial wall.

B. Growth law of the binary-fluid system

From dimensional analysis, one expects to see [ ~t
[8,9]. Plotting the growth law (k) ! versus time step
(Fig. 59), we can clearly see the apparent effect of finite
size on this measurement. The point in (k) at which
finite-size effects take over scales roughly with the system
size. From this point of view, it appears that the 1923
system is reasonably free of finite-size effects up to
tcps ~4000. The growth law appears to be linear from
about ¢ pg = 1000-4000.

When we calculate the effective exponent (48) of our
growth law as a function of {k ), linear regression would
predict an asymptotic exponent of ~0.8 (Fig. 60). It
should be noted that, for small to medium times, a simple
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FIG. 59. Plot of (k) ™! vs time step for 192* and 128° data
with four samples each, and a single 64° sample for the binary-
fluid model. An approximate tanh map was used, with 4 =1.3,
D =0.7, M =1.0, and n=1.0.

growth law such as /(¢) <t —t, would show an effective
exponent much less than 1. This is due to the sensitivity
of a log-log plot to the presence of constants or other
non-power-law contributions to /(¢#). The hydrodynamic
system coarsens rapidly, and easily reaches an almost ful-
ly phase separated state in a small volume studied com-
putationally. Consequently, the sums used in the calcula-
tion of the length are dominated by a few points in k
space, so that the calculated effective exponent for small
(k) fluctuates wildly at later times. Figure 60 clearly
shows all these difficulties.

To clearly illustrate the nature of the errors, we make a
simple model curve with small fluctuations in order to
simulate the above problems. First we posit that the
growth law is generally of the form as / (¢)=at +b, where
a and b are constants. Next we compensate for the
finite-size effect with a subtraction as I(t)=at +b —ct>.
Finally, we perturb our fitting form with a small pertur-
bation I (t)=(at +b —ct®)[1+d sin(Q¢)], where d and Q
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FIG. 60. Plot of the effective exponent vs (k) for 192 and
1283 systems, each with four samples. The effective exponent of
each sample is plotted. We note that if the effective exponent
data of the 128% samples are rescaled on the (k) axis by 2, then
the width of the fluctuation envelope of the 128° and 192 data
would roughly coincide.

effective exponent bears a striking resemblance to the
scatter of the actual data and shows the difficulties of
computing the effective exponent well. Therefore an
asymptotic linear growth law is not in contradiction to
our data, once finite size and some type of fluctuation are
accounted for.

However, the above may not be the complete story. To
make further progress, we try to understand the
preasymptotic growth law in terms of the interface
dispersion relation. This is natural, as in the binary-alloy
case, because the form factor already scales well before
the true asymptotic growth law is seen. Unfortunately,
we do not have the same level of control over the disper-
sion relation as we did in the binary-alloy case [39]. A
computational study of the dispersion relation for binary
fluids is given in Ref. [40].

The results of the dispersion relation study [40] can be
summarized as follows. Generally for any viscosity, the
spectrum of the linearized operator consists of an essen-
tial spectrum and a point spectrum with a point corre-
sponding to the Nambu-Goldstone (NG) mode. In Fig.
62 we plot k versus o~ ! for the NG mode and the bottom
of the essential spectrum for the case n=1, M =1,
D =0.7, and 4 =1.3 for the tanh map. Note for fixed k
that the lower o is to the right in Fig. 62. For large k the
lower bound of the spectrum is the point spectrum corre-
sponding to the NG mode, but for smaller k the lower
bound is the lower limit of the essential spectrum.

The NG mode decays as o~ k for sufficiently small k,
consistent with the growth law /(z)~z. However, the
lower limit of the essential spectrum behaves like o~ k?,
so that eventually the point spectrum goes into the essen-
tial spectrum for small k. The lower limit of the essential
spectrum corresponds to that for the linearized CH
operator [39]. A system with larger viscosity exhibits
spectra closer to that for the binary-alloy system. There-
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FIG. 61. Plot of the effective exponent of the simulated
growth law described in the text. This points to the difficulty of
obtaining the effective exponent if there is a small noise or a sys-
tematic measurement error.
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FIG. 62. Schematic description of the dispersion relation
around the kink solution for the binary fluid with y=1. Plot of
k vs ®~ ! for n=1. The Nambu-Goldstone (NG) mode comput-
ed is represented by the dotted line. The dashed line is the bot-
tom of the essential spectrum as estimated from the binary-alloy
model. The gray area is the essential spectrum. Note the vari-
ous power-law behaviors of the different branches in different
regimes.

fore, if 7 is large, then the NG branch behaves essentially
like @~k when it hits the essential spectrum. If 7 is not
very large, the NG branch will hit the essential spectrum
before it reaches the asymptotic behavior of w ~k. In the
case of the p=1, the latter occurs. Thus the dispersion
relation does not have universality with respect to the
viscosity. This strongly suggests that the preasymptotic
behaviors are sensitive to viscosity. This will be discussed
at length below.

Since the spectrum does not have a clear separation
into the point and essential spectrum in contrast to the
binary-alloy case, we do not try to reproduce the growth
exponent directly from the dispersion relation. Instead,
we fit the measured growth law directly to the dispersion
relation. The representative wave number of the inter-
face fluctuation k, must be proportional to (k ), since
even in the binary-fluid case the form factor becomes
roughly scalable before the system reaches the true
asymptotic regime. We note that the Porod plot for the
fluid system (Fig. 46) has a second hump which is at a
smaller Q =k /(k) than the binary-alloy system. The
second hump in the fluid system appears to be at
Q =2.75. Hence we set k,=2.75(k ). We relate » and ¢
analogously to the binary-alloy case as the Co ™ !'=¢ —ty.
t, was chosen by eye, with the criteria that as much of
the dispersion curve match the experimental growth law
as is possible (Fig. 63). We find that the growth law fits
the NG mode very well until it hits the essential spec-
trum. After that point, the growth law appears to follow
a path between that of the NG-like mode which obeys
o~k and the bottom of the essential spectrum which
obeys w~k?2. We recall that the hardened p*G(p) does
evolve slightly after time step 1500 (see Fig. 37). Time
step 1500 corresponds to the point where the growth law
evolves through the essential spectrum, as noted above.

As in the binary-alloy case, we wish to check if the
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FIG. 63. Plot of the growth law for the n=1 case.

above results are spurious. We check by fitting the
growth law to the data of a single 7=2.5 run of size 1283,
which ran with all other parameters identical to the main
7=1.0 study. In Fig. 64 we exhibit a log-log plot of
(k)(t) for =2.5 in the dispersion relation form. On
the same plot we fit the dispersion relation to the numeri-
cal growth law. After setting k, =2.75(k ), we obtain a
good fit by eye by setting ¢cps =570 ! +524.

Now to check scaling, we note that the dispersion-
relation-generated growth law starts to match the actual
data at about (k)=0.4 for n=2.5. We plot as before
the first minimum of the hardened G (r) as a function of
(k). In Fig. 65, we see that it is at (k) =0.4 that the
first minimum reaches a plateau. At (k) =0.3, the curve
resumes rising, and this corresponds roughly to the point
where the crossover knee in the NG mode dispersion re-
lation starts. The region after (k) =0.2 is dominated by
a large fluctuation, and nothing firm can be said. Howev-
er, it is conceivable that with better data, the first
minimum of the hardened G (r) reaches a new plateau
corresponding to the region after the NG mode cross-
over. Our hypothesis is that the first plateau in Fig. 65
corresponds to the system evolving with the growth law
controlled by the k ~w!”/3 regime. Then there is a cross-
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FIG. 64. Plot of the empirical growth law with the time step
mapped to A ! as used in the dispersion relations. In this way
one can clearly see the -;— and 1 growth laws.
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FIG. 65. Plot of the first minimum of hardened G(r). The
plot plateaus at about {k)=0.4, which coincides with the
agreement of the dispersion relation growth law and the numer-
ical data.

over to the k ~ regime corresponding to a rise in the
first minimum of the hardened G (7). Finally, there is the
k ~w regime, where we conjecture Fig. 65 would have
reached a new plateau. In the =2.5 case, we cannot ex-
tend the simulation into the essential spectrum region
due to the system size limitations, but it is clear that the
effective growth exponent continues to head toward — 1.

For binary fluids the diffusion time scale /(#)? is much
larger than the asymptotic growth time scale I (¢). This is
diametrically different from binary alloys, and implies
that diffusion may not be able to catch up with the dis-
placement of the interface due to advection especially
when viscosity is low. At earlier stages, this could delay
the establishment of the true equilibrium bulk concentra-
tions; a relatively mushy state would last considerably
longer than the high viscosity cases. Actually, we have
observed that with very low viscosity or mobility,
Mn~0.1, the bulk did not reach its equilibrium value
even though the domain pattern appeared well estab-
lished. The bulk reached a magnitude of about 0.8, al-
though the bulk equilibrium value should be 1. Eventual-
ly the bulk did appear to be rising toward 1, but during
the time of the test simulation it did not reach 1. The
effect appears to be independent of the size of the time
step. Since fluid systems experience frequent reconnec-
tions of the domains with subsequent relatively rapid
reorganization of the patterns, even at relatively later
stages the bulk concentration may be lowered locally.
This prevents the system from reaching its asymptotic re-
gime quickly. This explains why the system with n=2.5
seems to reach fluid dynamical asymptopia more easily
than the p=1 case despite the fact that fluid dynamical
effects should be more dominant in the latter. Roux’s
[73] result, which exhibits a very clear crossover from the
4 to the linear regime, may be understood from this point
of view.

The above conclusion can be translated into the
behavior of the dispersion relation: the exponent —1 is
easily observable when the NG mode goes into the essen-
tial spectrum for as small k as possible. In [40], it is not-
ed that the crossover region does not scale together when

dispersion relations for the NG mode for several different
7n’s are scaled together. This nonuniversality of the
preasymptotic behavior of the growth law is due to the
competition of the linear law with the “1” law corre-
sponding to the essential spectrum w~k? but not with
the 1 law, especially when the viscosity is low. This is at
variance with Furukawa’s phenomenological growth law
[41], which is a direct extension of Huse’s attempt to un-
derstand the preasymptotic growth law for the binary al-
loys [74,33]. Close examination of published data often
show that for certain experimental parameters, the actual
agreement with Furukawa’s law over the range of experi-
ment is not that good. Only a collage of experimental
data gives the appearance of a master curve. For poly-
mer systems we can change viscosity widely by changing
the molecular weight, so that the nonuniversality due to
this interference becomes visible, but it is not a genuine
polymer effect.

The numerical instability empirically occurs at the
point in the simulation where the essential spectrum
crosses the NG dispersion relation. This is true in the
1n=1 case, as the adaptive n,y;, function generally turns
on at about ¢-pg = 1500, which is the start of the essential
spectrum region from Fig. 63. Relative to the fast fluid
dynamic mode, the perturbed bulk does not quickly relax
back to its equilibrium value. Bulk regions are sometimes
away from their equilibrium value due to the disconnec-
tion and reconnection of domains, especially in the near-
critical quench case. Unless a fine time step is used to
track these regions, the fluid dynamic part of the simula-
tion can quickly overreact to the distorted regions in-
correctly, particularly since the establishment of a proper
equilibrium bulk phase is so slow.

VII. CONCLUDING REMARKS

We have presented a systematic study of spinodal
decomposition in critically quenched symmetric binary
systems with and without fluid dynamical effects. We
wish to summarize our main conclusions here.

(1) For binary alloys the asymptotic form factor can be
obtained from a fairly preasymptotic results with the
“hardening procedure” [30]. This implies that although
the interface may not be sufficiently thin compared to the
pattern size, and consequently the growth law may not be
asymptotic, the spatial patterns are already statistically
similar to the later stage patterns. For binary fluids, the
hardening procedure gives an almost time-independent
master form factor, but the small nonasymptoticity is still
discernible with Porod’s plot.

(2) We have given the best estimates of the asymptotic
form factors in a collage form which is consistent with
various asymptotic theoretical results (Figs. 45-47). We
know from our previous studies and from the current
study that these form factors are universal. For binary
alloys, the form factor is independent of the choice of the
free energy so long as the free energy is symmetric and
gives one hyperbolic source and two- hyperbolic sinks.
No quantitative specification is needed, but only these
qualitative features characterize binary alloy spinodal
decomposition. For binary fluids, it is very likely that the
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form factor is independent of the value of the kinematic
viscosity as long as the /(¢)~t regime is reached. This is
distinct from the Hele-Shaw binary-fluid spinodal decom-
position [31]. The (viscosity-dependent) nonasymptotici-
ty mentioned in (1) is almost harmless.

(3) The estimated asymptotic form factors exhibit clear
difference between the binary-alloy and binary-fluid cases.
The form factor for alloys is sharper and its Porod’s plot
has better defined secondary peak(s) than the fluid coun-
terpart. This is consistent with the more uniform spatial
patterns observed in alloys than in fluids.

(4) In contrast to the form factors, asymptotic growth
laws are hard to obtain. Preasymptotic growth laws are
found to be intimately related to the dispersion relation
of the fluctuations around kinks. This is natural, since
asymptotic patterns are formed in the preasymptotic
stages, as demonstrated in (1), after which the entire pat-

tern can coarsen due to the transport of materials whose’

sinks and sources are decaying small fluctuations of the
interfaces.

(5) The essential spectrum of the interface dispersion
relation has a crucial effect on the preasymptotic growth
law of binary fluids. The competition between the
Nambu-Goldstone mode and the essential modes dictates
the crossover behavior which disagrees with Furukawa’s
proposal especially when viscosity is small. When viscos-
ity is sufficiently large, however, the direct crossover
from the 1 to 1 regimes still may be observed.

(6) Damage-spreading studies clearly demonstrated
that there is a unique length scale in spinodal decomposi-
tion, and that the size of the independent volume is given
by the pattern size.

(7) The agreement between experimental systems and
the isotropic strain-effect-free binary-alloy simulations is
not yet satisfactory. The actual form factor seems to
differ from system to system. Low molecular weight
fluids and polymeric fluids appear to match very well
with our binary-fluid simulations. This implies that no
truly polymer effect on spinodal decomposition has been
observed experimentally in critical and near-critical
quench. We believe we do not need any special model to
explain the various preasymptotic and asymptotic phe-
nomena observed in polymer systems. Choosing ap-
propriate parameters in the ordinary fluid model with or
without the modification of the kinetic coefficient [see
(16)] explains most observed phenomena even away from
criticality.

(8) More technically, we have demonstrated that the
cell-dynamical scheme modeling of spinodal decomposi-
tion at the mesoscopic level is very effective and reliable.
Notice that our 192° implies far bigger systems than 1923
lattice Monte Carlo or lattice-gas systems, because, e.g.,
each cell corresponds to at least a 4° lattice for the Monte
Carlo method [2]. The relation to the conventional par-
tial differential equation approach was discussed, and the
concept of qualitative accuracy was advocated. We be-
lieve that the true reason for the qualitative accuracy is a
kind of renormalization-group structure behind spinodal
decomposition, but so far we have not been able to ex-
ploit this analytically.

(9) We have demonstrated that the spherically aver-
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aged form factor is essentially a self-averaging quantity,
so that it is more advantageous to study a few very large
systems than numerous (and inevitably) small systems,
unless one wishes to accurately study the finite-size effect.

(100 We have pointed out that the conventional
methods for computing the form factors and the pattern
length scales are not optimal, and in some cases grossly
misleading especially for binary fluids. Better schemes
are proposed.

(11) Finally, we must point out that to check the
asymptoticity, Tomita’s sum rule is very useful, so that
any conscientious computational work should give the
Porod plot or the plot of #2G (r).

(12) Accurate binary-alloy experimental data which
can give reliable Porod’s plots is desirable.

(13) More accurate binary-fluid spinodal decomposi-
tion with low molecular weight compounds is desirable.

We feel that to get the true asymptotic results for
binary fluids, we will need a 5123-sized system. Only one
sample is needed, so this will be feasible in the near fu-
ture.
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APPENDIX. COMPARISON
OF CDS BINARY FLUID MODELS

To assess the effect of our coarse-grained dynamics, we
did several comparative experiments, all starting from
identical initial conditions, and we varied the dynamics.
Each system was 643 in size with the tanh map, D =0.7,
A=1.3, v=1.0, and M =1.0. Four schemes are com-
pared: the additive scheme without skipping of the ve-
locity update (anv); the split step scheme without skip-
ping of the velocity updata (snv); the additive scheme
with the velocity update skipping with a maximum skip
of 10 iterations (av); and the split step scheme with veloc-
ity update skipping (sv). We computed the scattering
function at various ?cpg for each run, and compared
(k), S(k), k*S(k), and finally the volume-normalized
functional distance between the different runs for pat-
terns generated at the same #pg.



2652 ARITOMO SHINOZAKI AND YOSHITSUGU OONO 48
4 T T T T U'-‘_ 4’0 T T T T T T
5 1} Ots=500, (anv)
. ] ] | Ots=500, (snv) |
3 @ ; 30 ©18=500, (av)
o a . Ats=500, (sv)
Ao |- i g  1s=1000, (anv)
_\él 2 a a0} g é m ts=1000, (snv)
@@ O (anv) model (¢} [ #1s=1000, (av)
o O (snv) model A ts=1000, (sv)
1 @ o (av) model 10 » b= te
4 (sv) model 4
0 | 1 1 1 Il
0 200 400 600 800 1000 1200
Time Step

FIG. 66. Plot of (k) for different hydrodynamic simulation
models described in the text. The systems studied used the tanh
map with 4 =1.3, D =0.7, and 7= 1.0, and were of size 64°.

In Fig. 66 we have plotted (k) ~! versus ¢cpg for the
four schemes. There is little change in the growth law
among them. The most appreciable change is at about
tcps =700, where there is about a 5% difference between
(k) ! of (snv) and (av), where (snv) is the most advanced
in growth. The other two schemes lay between these
points. The (k) ™! actually appear to coalesce above
tcps = 1000, where finite-size effects become effective and
slow down the increase of {k ) in general.

In Fig. 67 we see that the various values of S (k) taken
for each scheme at two different times outline essentially
the same function. The slight separation of the data
points at a given time for the different models is con-
sistent with the above shift of the (k) for the different
models. Note that (av) again lags the most, and (snv) is
the most advanced, with the other schemes in between.
A closer inspection of the high-k region of S(k) in Fig.
68 via Porod’s plot, S (k)k* versus k, shows that the very
sensitive detail of the small-scale structure is numerically
indistinguishable. Even the changes over time appear to
be the same.
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FIG. 67. Plot of F(Q) vs Q for different hydrodynamic simu-
lation models described in the text. Two different time steps are
sampled, one at ¢cps =500 and the other at tcpg = 1000.

FIG. 68. Scaled Porod’s plot Q*F(Q) vs Q for different hy-
drodynamic simulation models described in the text. Two
different time steps are sampled, one at t-ps =500 and the other
at tcps = 1000. Note that subtle features of Porod’s plot are in-
distinguishable between models.

The I? distance of the patterns between all pairs of
models over time is plotted in Fig. 69. Most of the pairs
compared follow the same distance change over time.
The most significant difference is found between the (av)
and (snv), consistent with their difference in (k). A
quick calculation shows that the difference in (k) ac-
counts for the distance. First assume that the patterns
are nearly the same, except that one model is slightly
more coarsened. Call one model 4 and the other B.
(k) 'el, where [ is roughly the size of domains. The
bulk regions of 4 and B largely overlap, and contribute
nothing to the distance. At the interfaces, there is a
slight mismatch due to the difference in coarsening. At
worst, in a cell of a region which is mismatched, the dis-
tance is increased by 2/¥. The number of mismatched
cells is roughly [1—({k) ,/(k)p)*|V. Hence the upper
bound on the deviation is roughly 2|1 —({k ) , /(k ) ).
We noted above that the worst deviation is about 5% in
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FIG. 69. Plot of the /, distance between different hydro-
dynamic model simulations, all started from the same random
initial conditions.
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(k ), so that the distance should be roughly 0.28, which
is close to what we observe for the worst matching mod-
els.

In conclusion, the different models lead to patterns
which are essentially the same as analyzed by the scatter-
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ing form factor. The difference in the models is a slight
shift in the coarsening rates from model to model, and
this shift in rate accounts for the functional distance be-
tween the patterns generated by the different models at
corresponding tcpg.

*Present address: Department of Physics and Astronomy,
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FIG. 16. =0 isosurfaces of three-
dimensional binary-alloy spinodal decomposi-
tion at critical quench. Parameters are
Mcps=1, Dcps=0.7, and 4 =1.15 for the
tanh map described in text. System size is
192°. The images are a 128 subset of the en-
tire sample. From top left to right, images are
of tcps= 1000, 2000, and 4000 data, and, from
bottom left to right, of tcpg =7000, 12 000, and
20000 data.



FIG. 32. ¢=0 isosurfaces of three-
dimensional incompressible binary-fluid spino-
dal decomposition at critical quench. n=1,
Mps=1, and D¢cps=0.7, using the tanh map
described in the text with 4 =1.3. System size
is 192°. The entire 192° sample is exhibited.
From top left to right, images are of
Icps =500, 1000, and 1500 data, and, from bot-
tom left to right, of tcps =2000, 2500, and
3000 data.
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FIG. 62. Schematic description of the dispersion relation
around the kink solution for the binary fluid with =1. Plot of
k vs @' for n=1. The Nambu-Goldstone (NG) mode comput-
ed is represented by the dotted line. The dashed line is the bot-
tom of the essential spectrum as estimated from the binary-alloy
model. The gray area is the essential spectrum. Note the vari-
ous power-law behaviors of the different branches in different
regimes.



